Skip to main content
Log in

Catabolic plasmids of environmental and ecological significance

  • Mini Review
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The environmental and ecological significance of catabolic plasmids and their host strains are discussed in the context of their potential application for environmental biotechnology. Included is a comprehensive list of naturally occurring discrete catabolic plasmids isolated from either natural habitats or selective enrichment studies. General properties, such as plasmid maintenance, stability and transfer, are discussed together with the techniques for plasmid detection and monitoring in the environment. The issues concerning the construction of catabolic strains with new or broader substrate ranges and the uses of monocultures or consortia for in situ treatment are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adriaens P, Kohler H-PE, Kohler-Staub D, Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and co-culture biodegradation of 4,4′-dichlorobiphenyl. Appl Environ Microbiol 55:887–892

    PubMed  Google Scholar 

  2. Amy PS, Hiatt HD (1989) Survival and detection of bacteria in an aquatic environment. Appl Environ Microbiol 55:788–793

    PubMed  Google Scholar 

  3. Amy PS, Schulke JW, Frazier LM, Seidler RJ (1985) Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol 49:1237–1245

    PubMed  Google Scholar 

  4. Andreoni V, Bestetti A (1988) Ferulic acid degradation encoded by a catabolic plasmid. FEMS Microb Ecol 53:129–132

    Google Scholar 

  5. Anson JG, Mackinnon G (1984) NovelPseudomonas plasmid involved in aniline degradation. Appl Environ Microbiol 48:868–869

    Google Scholar 

  6. Barkay T, Fouts DL, Olson BH (1985) Preparation of a DNA gene probe for the detection of mercury resistance genes in gram-negative bacterial communities. Appl Environ Microbiol 49:686–692

    PubMed  Google Scholar 

  7. Bentjen SA, Fredrickson JK, Van Vorris P, Li SW (1989) Intact soil-core microcosms for evaluating the fate and ecological impact of the release of genetically engineered microorganisms. Appl Environ Microbiol 55:198–202

    Google Scholar 

  8. Bestetti G, Galli E (1987) Characterization of a novel TOL-like plasmid fromPseudomonas putida involved in 1,2,4-trimethylbenzene degradation. J Bacteriol 169:1780–1783

    PubMed  Google Scholar 

  9. Bestetti G, Galli E, Ruzzi M, Baldacci G, Zennaro E, Frontali L (1984) Molecular characterization of a plasmid fromPseudomonas fluorescens involved in styrene degradation. Plasmid 12:181–188

    PubMed  Google Scholar 

  10. Blackburn JW, Jain RK, Sayler GS (1987) Molecular microbial ecology of a naphthalene-degrading genotype in activated sludge. Environ Sci Technol 21:884–890

    Google Scholar 

  11. Blake CK, Hegeman GD (1987) Plasmid pCBI carries genes for anaerobic benzoate catabolism inAlcaligenes xylosoxidans subsp.denitrificans PN-1. J Bacteriol 169:4878–4883

    PubMed  Google Scholar 

  12. Bohlool BB, Schmidt EL (1980) The immunofluorescence approach in microbial ecology. Adv Microb Ecol 4:203–241

    Google Scholar 

  13. Boronin AM, Filonov AE, Balakshina VV, Kulakova AN (1985) Stability of naphthalene biodegradation plasmids NPL-1 and NPL-41 in populations ofPseudomonas putida under conditions of continuous culture. Mikrobiologiya 54:610–615

    Google Scholar 

  14. Boronin AM, Naumova RP, Grishchenkov UG, Ilijinskaya ON (1984) Plasmids specifying E-caprolactam degradation inPseudomonas. FEMS Microbiol Lett 22:167–170

    Google Scholar 

  15. Boronin AM, Kochetkov VV, Skryabin GK (1980) Incompatibility groups of naphthalene degradative plasmids inPseudomonas. FEMS Microbiol Lett 7:249–252

    Google Scholar 

  16. Boronin AM, Kochetkov VV, Starovoitov A, Skryabin A (1977) Plasmid pBS2 and pBS3, controlling the oxidation of naphthalene in bacteria of the genusPseudomonas. Dokl Akad Nauk SSSR 237:1205–1207

    PubMed  Google Scholar 

  17. Bradley DE, Williams PA (1982) The TOL plasmid is naturally derepressed for transfer. J Gen Microbiol 128:3019–3024

    PubMed  Google Scholar 

  18. Brandsch R, Hinkkanen AE, Decker K (1982) Plasmid mediated nicotine degradation inArthrobacter oxidans. Arch Microbiol 132:26–30

    Google Scholar 

  19. Burton NF, Day MJ, Bull AT (1982) Distribution of bacterial plasmids in clean and polluted sites in a South Wales river. Appl Environ Microbiol 44:1026–1029

    PubMed  Google Scholar 

  20. Cain RB (1981) Microbial degradation of surfactants and “builder” components. In: Leisinger T, Hutter R, Cook AM, Nuesch J (eds) Microbial degradation of xenobiotic and recalcitrant compounds. Academic Press, New York, pp 326–370

    Google Scholar 

  21. Cane PA, Williams PA (1982) The plasmid coded metabolism of naphthalene and 2-methylnaphthalene inPseudomonas strains: Phenotypic changes correlated with structural modification of plasmid pWW60-1. J Gen Microbiol 128:2281–2290

    Google Scholar 

  22. Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    PubMed  Google Scholar 

  23. Chakrabarty AM (1972) Genetic basis of the biodegradation of salicylate inPseudomonas. J Bacteriol 112:815–823

    PubMed  Google Scholar 

  24. Chakrabarty AM, Chon G, Gunsalus IC (1973) Genetic regulation of octane dissimilation plasmid inPseudomonas. Proc Natl Acad Sci USA 70:1137–1140

    PubMed  Google Scholar 

  25. Chatfield LK, Williams PA (1986) Naturally occurring TOL plasmids inPseudomonas strains carrying either two homologous or two nonhomologous catechol 2,3-oxygenase genes. J Bacteriol 168:878–885

    PubMed  Google Scholar 

  26. Chatterjee DK, Chakrabarty AM (1983) Genetic homology between independently isolated chlorobenzene-degradative plasmids. J Bacteriol 153:532–534

    PubMed  Google Scholar 

  27. Chatterjee DK, Kellogg ST, Hanada S, Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modifiedortho pathway. J Bacteriol 146:639–646

    PubMed  Google Scholar 

  28. Chaudhry GR, Cortez L (1988) Degradation of bromacil by aPseudomonas sp. Appl Environ Microbiol 54:2203–2207

    PubMed  Google Scholar 

  29. Chaudhry GR, Huang GH (1988) Isolation and characterization of a new plasmid from aFlavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J Bacteriol 170:3897–3902

    PubMed  Google Scholar 

  30. Cook AM (1987) Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev 46:93–116

    Google Scholar 

  31. Conners MA, Barnsley EA (1982) Naphthalene plasmids inPseudomonads. J Bacteriol 149:1096–1101

    PubMed  Google Scholar 

  32. Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated fromAlcaligenes paradoxus andAlcaligenes eutrophus. J Bacteriol 145:681–686

    PubMed  Google Scholar 

  33. Duggleby CJ, Bayley SA, Worsey MJ, Williams PA, Broda P (1977) Molecular sizes and relationships of TOL plasmids inPseudomonas. J Bacteriol 130:1274–1280

    PubMed  Google Scholar 

  34. Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation inPseudomonas putida. J Bacteriol 114:974–979

    PubMed  Google Scholar 

  35. Dunn NW, Dunn HM, Austen RA (1980) Evidence for the existence of two catabolic plasmids coding for the degradation of naphthalene. J Gen Microbiol 117:529–533

    Google Scholar 

  36. Ensley BD (1985) Stability of recombinant plasmids in industrial microorganisms. CRC Crit Rev Biotechnol 4:263–283

    Google Scholar 

  37. Farrell R, Chakrabarty AM (1979) Degradative plasmids: Molecular nature and mode of evolution. In: Timmis KN, Puhler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 97–109

    Google Scholar 

  38. Festl H, Ludwig W, Schleifer KH (1986) DNA hybridization probe for thePseudomonas fluorescens group. Appl Environ Microbiol 52:1190–1194

    PubMed  Google Scholar 

  39. Fisher PR, Appleton J, Pemberton JM (1978) Isolation and characterization of the pesticide-degrading plasmid pJP1 fromAlcaligenes paradoxus. J Bacteriol 135:798–804

    PubMed  Google Scholar 

  40. Frantz B, Chakrabarty AM (1986) Degradative plasmids inPseudomonas. In: Sokatch JR (ed) The bacteria. Vol. X. Academic Press, Orlando, FL, pp 295–323

    Google Scholar 

  41. Friello DA, Mylroie JR, Gibson DT, Rogers JE, Chakrabarty AM (1976) XYL, nonconjugative xylene-degradative plasmid inPseudomonas Pxy. J Bacteriol 127:1217–1224

    PubMed  Google Scholar 

  42. Frederickson JK, Bezdicek DF, Brockman FE, Li SW (1988) Enumeration of Tn5 mutant bacteria in soil by most-probable-number-DNA hybridization using a procedure and antibiotic resistance. Appl Environ Microbiol 54:446–453

    PubMed  Google Scholar 

  43. Fuhrman JA, Comeau DE, Hagstrom O, Chan AM (1988) Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol 54:1426–1429

    Google Scholar 

  44. Furukawa K, Chakrabarty AM (1982) Involvement of plasmids in total degradation of chlorinated biphenyls. Appl Environ Microbiol 44:619–626

    PubMed  Google Scholar 

  45. Ghosal D, You I-S, Chatterjee DK, Chakrabarty AM (1985) Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Proc Natl Acad Sci USA 82:1638–1642

    PubMed  Google Scholar 

  46. Ghosal D, You I-S, Chatterjee DK, Chakrabarty AM (1985) Microbial degradation of halogenated compounds. Science 228:135–142

    Google Scholar 

  47. Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252

    Google Scholar 

  48. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group specific oligodeoxy nucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726

    PubMed  Google Scholar 

  49. Golovleva LA, Pertsova RN, Boronin AM, Travkin VM, Kozlovsky SA (1988) Kelthane degradation by genetically engineeredPseudomonas aeruginosa BS827 in a soil ecosystem. Appl Environ Microbiol 54:1587–1590

    PubMed  Google Scholar 

  50. Gueren WF, Jones GE (1988) Mineralization of phenanthrene by aMycobacterium sp. Appl Environ Microbiol 54:937–944

    PubMed  Google Scholar 

  51. Gunsalus IC, Yen K-M (1981) Metabolic plasmid organization and distribution. In: Levy SB, Clowes RC, Koenig EL (eds) Molecular biology, pathogenicity and ecology of bacterial plasmids. Plenum Press, New York, pp 499–509

    Google Scholar 

  52. Hada HS, Sizemore RK (1981) Incidence of plasmids in marineVibrio spp. isolated from an oil field in the northwestern Gulf of Mexico. Appl Environ Microbiol 44:199–202

    Google Scholar 

  53. Hardman DJ, Gowland PC, Slater JH (1986) Large plasmids from soil bacteria enriched on halogenated alkanoic acids. Appl Environ Microbiol 51:41–51

    Google Scholar 

  54. Hartman J, Reineke W, Knackmuss H-J (1979) Metabolism of 3-chloro, 4-chloro, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37:421–428

    PubMed  Google Scholar 

  55. Heinaru AL, Duggleby CJ, Broda P (1978) Molecular relationships of degradative plasmids determined byin situ hybridization of their endonuclease generated fragments. Mol Gen Genet 160:347–351

    PubMed  Google Scholar 

  56. Herrmann H, Janke D, Krejsa S, Kunze I (1987) Involvement of the plasmid pPGH1 in the phenol degradation ofPseudomonas pulida strain H. FEMS Microbiol Letts 43:133–137

    Google Scholar 

  57. Hewetson L, Dunn HM, Dunn NW (1978) Evidence for a transmissible catabolic plasmidPseudomonas putida encoding the degradation of p-cresol via the protocatechuate ortho cleavage pathway. Genet Res Camb 32:249–255

    Google Scholar 

  58. Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711

    Google Scholar 

  59. Hopper DS, Kemp PD (1980) Regulation of enzymes of the 3,5-xylenol degradative pathway inPseudomonas putida. J Bacteriol 142:21–26

    PubMed  Google Scholar 

  60. Hughes EJL, Bayly RC, Skurray RA (1984) Characterization of a TOL-like plasmid fromAlcaligenes eutrophus that controls expression of a chromosomally encoded p-cresol pathway. J Bacteriol 158:73–78

    PubMed  Google Scholar 

  61. Jacoby GA (1986) Resistance plasmids ofPseudomonas. In: Sokatch JR (ed) The bacteria. Vol. X. Academic Press, Orlando, FL, pp 265–293

    Google Scholar 

  62. Jain RK, Sayler GS, Wilson JT, Houston L, Pacia D (1987) Maintenance and stability of introduced genotypes in ground water aquifer material. Appl Environ Microbiol 53:996–1002

    PubMed  Google Scholar 

  63. Jain RK, Burlage RS, Sayler GS (1988) Methods for detecting recombinant DNA in the environment. CRC Crit Rev Biotechnol 8:33–84

    Google Scholar 

  64. Kamp PF, Chakrabarty AM (1979) Plasmids specifying p-chlorobiphenyl degradation in enteric bacteria. In: Timmis KN, Puhler A (eds) Plasmids of medical, environmental, and commercial importance. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 275–285

    Google Scholar 

  65. Karns JS, Kilbane JJ, Duttagupta S, Chakrabarty AM (1983) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degradingPseudomonas cepacia. Appl Environ Microbiol 46:1176–1181

    PubMed  Google Scholar 

  66. Karns JS, Kilbane JJ, Chatterjee DK, Chakrabarty AM (1984) Microbial biodegradation of 2,4,5-trichlorophenoxyacetic acid and chlorophenols. In: Omenn GS, Hollaender A (eds) Genetic control of environmental pollutants. Plenum Press, New York, pp 3–21

    Google Scholar 

  67. Kawasaki H, Yahara H, Tonomura K (1981) Isolation and characterization of plasmid pUO1 mediating dehalogenation of haloacetate and mercury resistance inMoraxella sp. B. Agric Biol Chem 45:1477–1481

    Google Scholar 

  68. Keil H, Lebens MR, Williams PA (1985) TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-oxygenase genes. J Bacteriol 163:248–255

    PubMed  Google Scholar 

  69. Keil H, Keil S, Pickup RW, Williams PA (1985) Evolutionary conservation of genes coding formeta pathway enzymes with TOL plasmids pWW0 and pWW53. J Bacteriol 164:887–895

    PubMed  Google Scholar 

  70. Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: New technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135

    PubMed  Google Scholar 

  71. Keshacvarz T, Lilly MD, Clarke PH (1985) Stability of a catabolic plasmid in continuous culture. J Gen Microbiol 131:1193–1203

    Google Scholar 

  72. Kilbane JJ, Chatterjee DK, Karns JS, Kellogg ST, Chakrabarty AM (1982) Biodegradation of 2,4,5-trichloroacetic acid by a pure culture ofPseudomonas cepacia. Appl Environ Microbiol 44:72–78

    PubMed  Google Scholar 

  73. Kiyohara H, Sugyana M, Mondello FJ, Gibson DT, Yano K (1983) Plasmid involvement in the degradation of polycyclic aromatic hydrocarbons by aBeijerinckia sp. Biochem Biophys Res Commun 111:939–945

    PubMed  Google Scholar 

  74. Kochetkov VV, Boronin AM (1984) Comparative study of plasmids controlling the biodegradation of naphthalene by a culture ofPseudomonas. Mikrobiologiya 53:639–644

    Google Scholar 

  75. Kochetkov VV, Stasovoitov II, Boronin AM, Skryabin GK (1982)Pseudomonas putida plasmid pBS241: Plasmid mediated biphenyl degradation. Dokl Akad Nauk SSSR 226:241–243

    Google Scholar 

  76. Kolenc RJ, Inniss WE, Glick BR, Robinson CW, Mayfield CI (1988) Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl Environ Microbiol 54:638–641

    PubMed  Google Scholar 

  77. Krockel L, Focht DD (1987) Construction of chlorobenzene-utilizing recombinants by progenitive manifestation of a rare event. Appl Environ Microbiol 53:2470–2475

    PubMed  Google Scholar 

  78. Kunz DA, Chapman PJ (1981) Isolation and characterization of spontaneously occurring TOL plasmid mutants ofPseudomonas putida HSI. J Bacteriol 146:952–964

    PubMed  Google Scholar 

  79. Lehrbach PR, Zeyer J, Reineke W, Knackmuss H-J, Timmis KN (1984) Enzyme recruitmentin vitro: Use of cloned genes to extend the range of haloaromatics degraded byPseudomonas sp. strain B13. J Bacteriol 158:1025–1032

    PubMed  Google Scholar 

  80. Levin BR (1986) The maintenance of plasmids and transposons in natural populations of bacteria. In: Levy SB, Norvick RP (eds) Antibiotic resistance genes: Ecology, transfer and expression. Branbury Report 24. Cold Spring Harbor Laboratory, New York, pp 57–70

    Google Scholar 

  81. Levy SB (1986) Ecology of antibiotic resistance determinants. In: Levy SB, Norvick RP (eds) Antibiotic resistance genes: Ecology, transfer, and expression. Branbury Report 24. Cold Spring Harbor Laboratory, New York, pp 17–30

    Google Scholar 

  82. Levy SB, Miller RV (1989) Gene transfer in the environment. McGraw-Hill Inc, New York

    Google Scholar 

  83. Monticello DJ, Bakker D, Finnerty WR (1985) Plasmid-mediated degradation of dibenzothiophene byPseudomonas species. Appl Environ Microbiol 49:756–760

    PubMed  Google Scholar 

  84. Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene fromFlavobacterium sp. by Southern hybridization withopd fromPseudomonas diminuta. Appl Environ Microbiol 51:926–930

    PubMed  Google Scholar 

  85. Mulbry WW, Kearney PC, Nelson JO, Karns JS (1987) Physical comparison of parathion hydrolase plasmids fromPseudomonas diminuta andFlavobacterium sp. Plasmid 18:173–177

    PubMed  Google Scholar 

  86. Negoro S, Okada H (1982) Physical map of nylon oligomer degradative plasmid pOAD2 harbored inFlavobacterium sp. K172. Agric Biol Chem 46:745–750

    Google Scholar 

  87. Negoro S, Shinagawa H, Nakata A, Kinoshita S, Hatozaki T, Okada H (1980) Plasmid control of 6-aminohexanoic acid cyclic dimer degradation enzymes ofFlavobacterium sp. KI72. J Bacteriol 143:238–245

    PubMed  Google Scholar 

  88. Negoro S, Taniguchi T, Kanaoka M, Kimura H, Okada H (1983) Plasmid determined enzymic degradation of nylon oligomers. J Bacteriol 155:22–31

    PubMed  Google Scholar 

  89. Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66

    Google Scholar 

  90. Ogunseitan OA, Tedford ET, Pacia D, Sirotkin KM, Sayler GS (1987) Distribution of plasmids in groundwater bacteria. J Ind Microbiol 1:311–317

    Google Scholar 

  91. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR (1986) Microbial ecology and evolution: A ribosomal RNA approach. Ann Rev Microbiol 40:337–365

    Article  Google Scholar 

  92. Palleroni NJ (1986) Taxonomy of the pseudomonads. In: Sokatch JR (ed) The bacteria. Vol X. Academic Press, Orlando, FL, pp 3–26

    Google Scholar 

  93. Painceria MT, Alonso JC, Saracher AN, Grau O (1985) A 38 Md plasmid associated with naphthalene utilization inPseudomonas. Microbios Lett 28:41–46

    Google Scholar 

  94. Pemberton JM, Corney B, Don RH (1979) Evolution and spread of pesticide degrading ability among soil micro-organisms. In: Timmis KN, Puhler A (eds) Plasmids of medical, environmental, and commercial importance. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 287–299

    Google Scholar 

  95. Perkins EJ, Lurquin PF (1988) Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene inAlcaligenes eutrophus JMP134 (pJP4). J Bacteriol 170:5669–5672

    PubMed  Google Scholar 

  96. Pettigrew CA, Sayler GS (1986) The use of DNA: DNA colony hybridization in the rapid isolation of 4-chlorobiphenyl degradative phenotypes. J Microbiol Methods 5:205–213

    Google Scholar 

  97. Pickup RW, Williams PA (1982) Spontaneous deletions in the TOL plasmid pWW20 which give rise to the B3 regulatory mutants ofPseudomonas putida MT20. J Gen Microbiol 128:1385–1390

    PubMed  Google Scholar 

  98. Pickup RW, Lewis RJ, Williams PA (1983)Pseudomonas sp. MT14, a soil isolate which contains two large catabolic plasmids, one a TOL plasmid and one coding for phenylacetate catabolism and mercury resistance. J Gen Microbiol 129:153–158

    Google Scholar 

  99. Ramos JL, Waserfallen A, Rose K, Timmis KN (1987) Redesigning metabolic routes: Manipulation of the TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596

    PubMed  Google Scholar 

  100. Reanney DC, Roberts WP, Kelly WJ (1982) Genetic interactions among microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Vol. 1. Academic Press, London, pp 287–322

    Google Scholar 

  101. Reineke W, Knackmuss H-J (1979) Construction of haloaromatics utilising bacteria. Nature (Lond) 277:385–386

    Google Scholar 

  102. Reineke W, Knackmuss H-J (1980) Hybrid pathway for chlorobenzoate metabolism inPseudomonas sp. B13 derivatives. J Bacteriol 142:467–473

    PubMed  Google Scholar 

  103. Reineke W, Knackmuss H-J (1984) Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402

    PubMed  Google Scholar 

  104. Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation inPseudomonas putida. Proc Natl Acad Sci USA 70:885–889

    PubMed  Google Scholar 

  105. Rojo F, Pieper DH, Engesser K-H, Knackmuss H-J, Timmis KN (1987) Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398

    PubMed  Google Scholar 

  106. Saye DJ, Ogunseitan O, Sayler GS, Miller RV (1987) Potential for transduction of plasmids in a natural freshwater environment: Effect of plasmid donor concentration and a natural microbial community on transduction inPseudomonas aeruginosa. Appl Environ Microbiol 53:987–995

    PubMed  Google Scholar 

  107. Sayler GS, Stacey G (1986) Methods for evaluation of microorganism properties. In: Fisksel J, Covello VT (eds) Biotechnology risk assessment: Issues and methods for environmental introductions. Pergamon Press, New York, pp 35–55

    Google Scholar 

  108. Sayler GS, Shields MS, Tedford ET, Breen A, Hooper SW, Sirotkin KM, Davis JW (1985) Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol 49:1295–1302

    PubMed  Google Scholar 

  109. Schmidt E, Hellwig M, Knackmuss H-J (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl Environ Microbiol 46:1038–1044

    PubMed  Google Scholar 

  110. Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis byPseudomonas diminuta. Appl Environ Microbiol 44:246–249

    Google Scholar 

  111. Shields MS, Hooper SW, Sayler GS (1985) Plasmid mediated mineralization of 4-chlorobiphenyl. J Bacteriol 163:882–889

    PubMed  Google Scholar 

  112. Slater JH, Lovatt D (1984) Biodegradation and the significance of microbial communities. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 439–485

    Google Scholar 

  113. Sinclair MI, Maxwell PC, Lyon BR, Holloway BW (1986) Chromosomal location of TOL plasmid DNA inPseudomonas putida. J Bacteriol 168:1302–1308

    PubMed  Google Scholar 

  114. Singer JT, Finnerty WR (1984) Genetics of hydrocarbon-utilizing microorganisms. In: Atlas RM (ed) Petroleum microbiology. MacMillan, New York, pp 299–354

    Google Scholar 

  115. Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55:548–554

    PubMed  Google Scholar 

  116. Skryabin GK, Kochetkov VV, Eremin AA, Perebityuk AN, Starovoitov II, Boronin AM (1980) New naphthalene-biodegrading plasmid pBS4. Dokl Akad Nauk SSSR 250:202–215

    Google Scholar 

  117. Stalker DM, McBride KE (1987) Cloning and expression inEscherichia coli of aKlebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide Bromoxynil. J Bacteriol 169:955–960

    PubMed  Google Scholar 

  118. Steffan RJ, Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 54:2185–2191

    PubMed  Google Scholar 

  119. Steffan RJ, Goksyr J, Bej AK, Atlas RM (1988) Recovery of DNA from soils and sediments. Appl Environ Microbiol 54:2908–2915

    PubMed  Google Scholar 

  120. Tam AC, Behki RM, Khan SU (1987) Isolation and characterization of an S-ethyl-N, N-dipropylthiocarbamate-degradingArthrobacter strain and evidence for plasmid-associatedS-ethyl-N, N-dipropylthiocarbamate. Appl Environ Microbiol 53:1088–1093

    PubMed  Google Scholar 

  121. Thacker R, Rorvig O, Kahlon P, Gunsalus IC (1978) NIC, conjugative nicotine-nicotinate degradative plasmid inPseudomonas convexa. J Bacteriol 135:289–290

    PubMed  Google Scholar 

  122. Thacker R, Gunsalus IC (1979) Dissociation of the NIC plasmid aggregate inPseudomonas putida. J Bacteriol 137:697–699

    PubMed  Google Scholar 

  123. Thomas CM, Smith CA (1987) Incompatibility group P plasmids: Genetics, evolution, and use in genetic manipulation. Ann Rev Microbiol 41:77–101

    Google Scholar 

  124. Timmis KN, Lehrbach PR, Harayama S, Don RH, Mermond N, Bas J, Leppik R, Weightman AJ, Reineke W, Knackmuss H-J (1985) Analysis and manipulation of plasmid-encoded pathways for the catabolism of aromatic compounds by soil bacteria. In: Helinski DR, Cohen SN, Clewell DB, Jackson DA, Hollaender A (eds) Plasmids in bacteria. Plenum Press, New York, pp 719–739

    Google Scholar 

  125. Trevors JT, Barkay T, Bourquin AW (1987) Gene transfer among bacteria in soil and aquatic environments: A review. Can J Microbiol 33:191–198

    Google Scholar 

  126. Tsuda M, Lino T (1987) Genetic analysis of a transposon carrying toluene degrading genes on a TOL plasmid pWW0. Mol Gen Genet 210:270–276

    PubMed  Google Scholar 

  127. Vandenbergh PA, Wright AM (1983) Plasmid involvement in acyclic isoprenoid metabolism byPseudomonas putida. Appl Environ Microbiol 45:1953–1955

    Google Scholar 

  128. Vandenbergh PA, Olsen RH, Colaruotolo JF (1981) Isolation and genetic characterization of bacteria that degrade chloroaromatic compounds. Appl Environ Microbiol 42:737–739

    Google Scholar 

  129. Vega D, Cooke R, Marty JL (1988) Relationship between phenylcarbamate degradation and plasmids in two strains ofPseudomonas. FEMS Microbiol Lett 49:199–202

    Google Scholar 

  130. Weinberger M, Kolenbander PE (1979) Plasmid determined 2-hydroxypyridine utilization byArthrobacter crystallopoietes. Can J Microbiol 25:329–334

    PubMed  Google Scholar 

  131. White DC (1988) Validation of quantitative analysis for microbial biomass, community structure and metabolic activity. Arch Hydrobiol Beih 31:1–18

    Google Scholar 

  132. White GP, Dunn NW (1978) Compatibility and sex specific phage plating characteristics of the TOL and NAH catabolic plasmids. Genet Res 32:207–213

    PubMed  Google Scholar 

  133. Wiggins BA, Jones SH, Alexander M (1987) Explanation for the acclimation period preceding the mineralization of organic chemical in aquatic environments. Appl Environ Microbiol 53:791–796

    PubMed  Google Scholar 

  134. Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates byPseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    PubMed  Google Scholar 

  135. Williams PA, Worsey MJ (1976) Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: Evidence for the existence of new TOL plasmids. J Bacteriol 125:818–828

    PubMed  Google Scholar 

  136. Winter RB, Yen K-M, Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinantEscherichia coli. Bio/Technology 7:282–285

    Google Scholar 

  137. Wyndham RC, Strauss NA (1988) Chlorobenzoate catabolism and interaction betweenAl-caligenes andPseudomonas species from Bloody Run Creek. Arch Microbiol 150:230–236

    PubMed  Google Scholar 

  138. Wyndham RC, Singh RK, Strauss NA (1988) Catabolic instability, plasmid gene deletion and recombination inAlcaligenes sp. BR60. Arch Microbiol 150:237–243

    PubMed  Google Scholar 

  139. Yano K, Nishi T (1980) pKJ1, a naturally occurring conjugative plasmid coding for toluene degradation and resistance to streptomycin and sulfonamides. J Bacteriol 143:552–560

    PubMed  Google Scholar 

  140. Yates JR, Lobos JH, Holmes DS (1986) The use of genetic probes to detect microorganisms in biomining operations. J Ind Microbiol 1:129–135

    Google Scholar 

  141. Yen K-M, Serdar CM (1988) Genetics of naphthalene catabolism inPseudomonas. CRC Crit Rev Microbiol 15:247–267

    Google Scholar 

  142. Zuniga MC, Durham DR, Welch RA (1981) Plasmid and chromosome mediated dissimilation of naphthalene and salicylate inPseudomonas putida pMWD-1. J Bacteriol 147:836–843

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayler, G.S., Hooper, S.W., Layton, A.C. et al. Catabolic plasmids of environmental and ecological significance. Microb Ecol 19, 1–20 (1990). https://doi.org/10.1007/BF02015050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02015050

Keywords

Navigation