Skip to main content
Log in

Isolation and partial characterization of siderophore mutants ofAzotobacter vinelandii

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Azotobacter vinelandii was mutagenized with ethyl methanesulfonate, and colonies that did not produce the fluorescent yellow-green pigment that is characteristic of the wild type were selected. All 32 stable nonfluorescent mutants failed to secrete the siderophore azotobactin and were also impaired to some extent in the production of the second majorA. vinelandii siderophore, azotochelin. Mutants also showed differences in their capacity to grow on medium supplemented with either 200 μM bipyridyl or 200 μM Fe (III). In the absence of iron, an 84-kilodalton outer membrane protein, which is a major derepressed component, was missing in some of the mutants. Thus, siderophore production inA. vinelandii appears to be a highly integrated system in which the syntheses of azotobactin and azotochelin are functionally coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Ankenbauer R, Hanne RF, Cox CD (1986) Mapping of mutations inPseudomonas aeruginosa defective in pyoverdin production. J Bacteriol 167:7–11

    PubMed  Google Scholar 

  2. Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

    Google Scholar 

  3. Biedermann G, Schindler P (1957) On the solubility product of precipitated iron (III) hydroxide. Acta Chem Scand 11:731–740

    Google Scholar 

  4. Bjorn MJ, Iglewski BH, Ives SK, Sadoff JC, Vasil ML (1978) Effect of iron on yields of exotoxin A in cultures ofPseudomonas aeruginosa PA-103. Infect Immun 19:785–791

    PubMed  Google Scholar 

  5. Bjorn MJ, Sokol PA, Iglewski BH (1979) Influence of iron on yields of extracellular products inPseudomonas aeruginosa cultures. J Bacteriol 138:193–200

    PubMed  Google Scholar 

  6. Bothe D, Simonis M, Von Dohren H (1985) A sodium dodecyl sulfate-gradient gel electrophoresis system that separates polypeptides in the molecular weight range of 1500 to 100,000. Anal Biochem 151:49–54

    PubMed  Google Scholar 

  7. Braun V, Hantke K, Eich-Helmerich K, Koster W, Pressler U, Sauer M, Schaffer S, Schöffler H, Staudenmaier H, Zimmerman L (1987) Iron transport systems inEscherichia coli. In: Winkelmann G, van der Hahn D, Neilands JB (eds) Iron transport in microbes, plants and animals. Weinheim: VCH, pp 35–51

    Google Scholar 

  8. Corbin JL, Bulen WA (1969) The isolation and identification of 2, 3-dihydroxybenzoic acid and 2-N,6-N-di-(2, 3 dihydroxybenzoyl)-L-lysine formed by iron-deficientAzotobacter vinelandii. Biochemistry 8:757–762

    PubMed  Google Scholar 

  9. Crosa JH (1987) Plasmid-mediated iron transport in pathogenic bacteria. In: Winkelmann G, van der Hahn D, Neilands, JB (eds) Iron transport in microbes, plants and animals. Weinheim: VCH, pp 53–65

    Google Scholar 

  10. Demange P, Wedenbaum S, Bateman A, Dell A, Abdallah MA (1987) Bacterial siderophores: structure and physicochemical properties of pyoverdins and related compounds. In: Winkelmann G, van der Hahn D, Neilands JB (eds) Iron transport in microbes, plantes and animals. Weinheim: VCH, pp 167–187

    Google Scholar 

  11. De Weger LA, van Boxtel R, van der Burg B, Gruters RA, Geels FP, Schippers B, Lugtenberg B (1986) Siderophores and outer membrane proteins of antagonistic, plant-growth stimulating, root-colonizingPseudomonas spp. J Bacteriol 165:585–594

    PubMed  Google Scholar 

  12. Glick BR, Brooks HE, Pasternak JJ (1985) Transformation ofAzotobacter vinelandii with plasmid DNA. J Bacteriol 162:276–279

    PubMed  Google Scholar 

  13. Glick BR, Brooks HE, Pasternak JJ (1986) Physiological effects of plasmid DNA transformation onAzotobacter vinelandii. Can J Microbiol 32:145–148

    Google Scholar 

  14. Gross R, Engelbrecht F, Braun V (1985) Identification of the genes and their polypeptide products responsible for aerobactin synthesis by pColV plasmids. Mol Gen Genet 201:204–212

    PubMed  Google Scholar 

  15. Hohnadel D, Haas D, Meyer JLM (1986) Mapping of mutations affecting pyoverdine production inPseudomonas aeruginosa. FEMS Microbiol Lett 36:195–199

    Google Scholar 

  16. Knosp O, von Tigerstrom M, Page WJ (1984) Siderophoremediated uptake of iron inAzotobacter vinelandii. J Bacteriol 159:341–347

    PubMed  Google Scholar 

  17. Loper JE, Orser CS, Panopoulos NJ, Schroth MN (1984) Genetic analysis of fluorescent pigment production inPseudomonas syringae pv.syringae. J Gen Microbiol 130:1507–1515

    Google Scholar 

  18. Marugg JD, van Spanie M, Hoekstra WPM, Schippers B, Weisbeek PJ (1985) Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulatingPseudomonas putida WCS358. J Bacteriol 164:563–570

    PubMed  Google Scholar 

  19. Miller JF (1972) Experiments in molecular genetics Cold Spring Harbor, New York: Cold Spring Harbor Laboratory

    Google Scholar 

  20. Moores JC, Magazin M, Ditta GS, Leong J (1984) Cloning of genes involved in the biosynthesis of pseudobactin, a high affinity iron transport agent of a plant growth-promotingPseudomonas strain. J Bacteriol 157:53–58

    PubMed  Google Scholar 

  21. Nielands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    Google Scholar 

  22. Page WJ, Huyer M (1984) Derepression of theAzotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion. J Bacteriol 158:496–502

    PubMed  Google Scholar 

  23. Payne SM (1987) Iron transport inShigella andVibrio species. In: Winkelmann G, van der Hahn D, Nielands JB (eds) Iron transport in microbes, plants and animals. Weinheim: VCH, pp 99–110

    Google Scholar 

  24. Peterson GL (1983) Determination of total protein. Methods Enzymol 91:95–119

    PubMed  Google Scholar 

  25. Philson SB, Llinas M (1982) Siderophores fromPseudomonas fluorescens. J Biol Chem 257:8081–8085

    PubMed  Google Scholar 

  26. Sadoff HL, Shimel B, Ellis S (1979) Characterization ofAzotobacter vinelandii deoxyribonucleic acid and folded chromosomes. J Bacteriol 138:871–877

    PubMed  Google Scholar 

  27. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    PubMed  Google Scholar 

  28. Terzaghi BE (1980) A method for the isolation ofAzotobacter mutants depressed for Nif. J Gen Microbiol 118:275–278

    Google Scholar 

  29. Toukdarian A, Kennedy C (1986) Regulation of nitrogen metabolism inAzotobacter vinelandii: isolation ofntr andglnA genes and construction ofntr mutants. EMBO J 5:399–407

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glick, B.R., Menhart, N., Soong, N.W. et al. Isolation and partial characterization of siderophore mutants ofAzotobacter vinelandii . Current Microbiology 17, 343–346 (1988). https://doi.org/10.1007/BF01570875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570875

Keywords

Navigation