Skip to main content
Log in

Attractors and transients for a perturbed periodic KdV equation: A nonlinear spectral analysis

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

In this paper we rigorously show the existence and smoothness inε of traveling wave solutions to a periodic Korteweg-deVries equation with a Kuramoto-Sivashinsky-type perturbation for sufficiently small values of the perturbation parameterε. The shape and the spectral transforms of these traveling waves are calculated perturbatively to first order. A linear stability theory using squared eigenfunction bases related to the spectral theory of the KdV equation is proposed and carried out numerically. Finally, the inverse spectral transform is used to study the transient and asymptotic stages of the dynamics of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold,Mathematical methods of classical mechanics, Springer-Verlag, New York (1988).

    Google Scholar 

  2. P. F. Byrd and M. D. Friedman,Handbook of elliptic integrals for engineers and physicists, Springer-Verlag, New York (1954).

    Google Scholar 

  3. J. Carr,Applications of centre manifold theory, Applied Mathematical Sciences 38, Springer-Verlag, New York (1981).

    Google Scholar 

  4. P. G. Ciarlet and J.-L. Lions,Handbook of numerical analysis, North-Holland, Amsterdam (1990).

    Google Scholar 

  5. B. I. Cohen, J. A. Krommes, W. M. Tang, and M. N. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nucl. Fusion 16, 971 (1976).

    Google Scholar 

  6. P. Collet, J.-P. Eckmann, H. Epstein, and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Preprint, Université de Genève (1992).

  7. G. Derks, Ph.D. Thesis, University of Twente, The Netherlands (1992).

  8. N. M. Ercolani, M. G. Forest, and D. W. McLaughlin, Geometry of the modulational instability I: Local analysis, University of Arizona Preprint (1987).

  9. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equ. 31 (1979), 58–93.

    Article  MathSciNet  Google Scholar 

  10. H. Flaschka and D. W. McLaughlin, Canonically conjugate variables for the Korteweg-deVries equation and the Toda lattice with periodic boundary conditions, Prog. Theor. Phys. 55, No. 2, 438–456 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Flaschka, M. G. Forest, and D. W. McLaughlin, Multiphase averaging and the inverse spectral solution of the Korteweg-deVries equation, Comm. Pure Appl. Math., 33, 739–784 (1980).

    MATH  MathSciNet  Google Scholar 

  12. J. Garnett and E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators, Comment. Math. Helvetici 59, 258–312 (1984).

    MATH  MathSciNet  Google Scholar 

  13. J. Garnett and E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger, operators, II, Comment. Math. Helvetici 62, 18–37 (1987).

    MATH  MathSciNet  Google Scholar 

  14. J. M. Hyman and B. Nicolaenko, The Kuramoto-Sivashinsky equation: a bridge between PDE's and dynamical systems, Physica 18D, 113–126 (1986).

    MathSciNet  Google Scholar 

  15. J. M. Hyman, B. Nicolaenko, and S. Zaleski, Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces, Physica 23D, 265–292 (1985).

    MathSciNet  Google Scholar 

  16. Yu. S. Ilyashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation, IMA Preprint Series 665 (1990).

  17. G. Iooss and D. D. Joseph,Elementary stability and bifurcation theory, 2nd edition, Springer-Verlag, New York (1990).

    Google Scholar 

  18. T. Kawahara, Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation, Phys. Rev. Lett. 51, no. 3, 381–383 (1983).

    Article  Google Scholar 

  19. T. Kawahara and S. Toh, On the stability of soliton-like pulses in a nonlinear dispersive system with instability and dissipation, J. Phys. Soc. Jpn. 54, 1257–1269 (1985).

    Article  Google Scholar 

  20. T. Kawahara and S. Toh, Nonlinear dispersive periodic waves in the presence of instability and damping, Phys. Fluids 28(6), 1636–1638 (1985).

    Article  Google Scholar 

  21. T. Kawahara and S. Toh, Pulse interactions in an unstable dissipative-dispersive nonlinear system, Phys. Fluids 31(8), 2103–2111 (1988).

    Article  MathSciNet  Google Scholar 

  22. I. G. Kevrekidis, B. Nicolaenko, and J. C. Scovell, Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math. 50, 760–790 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  23. G. I. Marchuk,Methods of numerical mathematics, Springer-Verlag, New York (1982).

    Google Scholar 

  24. H. P. McKean, Integrable systems and algebraic curves,Lecture Notes in Mathematics 755, pp. 83–200, Springer-Verlag, New York (1979).

    Google Scholar 

  25. H. P. McKean, and P. van Moerbeke, The spectrum of Hill's equation, Inventiones Math. 30, 217–274 (1975).

    Article  MATH  Google Scholar 

  26. H. McKean and E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29, 143–226 (1976).

    MATH  MathSciNet  Google Scholar 

  27. D. W. McLaughlin, Modulations of KdV wavetrains, Physica 3D (1981), 335–343.

    Google Scholar 

  28. B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equation: Nonlinear stability and attractors, Physica 16D, 155–183 (1985).

    MathSciNet  Google Scholar 

  29. A. R. Osborne and E. Segre, Numerical solutions of the Korteweg-deVries equation using the periodic scattering transformμ-representation, Physica 44D, 575–604 (1990).

    MathSciNet  Google Scholar 

  30. A. R. Osborne and E. Segre, Numerical construction of nonlinear wave train solutions of the periodic Korteweg-deVries equation, inInverse methods in action, P. C. Sabatier (Ed.), pp. 471–480, Springer-Verlag, New York (1990).

    Google Scholar 

  31. R. L. Pego and M. I. Weinstein, A class of eigenvalue problems, with application to instability of solitary waves, IMA Preprint Series 863 (1991).

  32. J. Pöschel and E. Trubowitz,Inverse spectral theory, Academic Press, New York (1987).

    Google Scholar 

  33. H. Roitner,Applications of the Inverse Spectral Transform to a Korteweg-deVries equation with a Kuramoto-Sivashinsky-type perturbation, Ph.D. thesis, University of Arizona (1991).

  34. T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations, J. Comp. Phys. 55, 192–253 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  35. F. Tappert, Numerical solutions of the Korteweg-deVries equation and its generalizations by the split step Fourier method,Lectures in Nonlinear Wave Motion, A. C. Newell (Ed.), AMS Applied Mathematics Vol. 15, Am. Math. Soc., Providence, RI (1974).

    Google Scholar 

  36. R. Temam,Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York (1988).

    Google Scholar 

  37. A. N. Tikhonov, A. B. Vasil'eva, and A. G. Sveshnikov,Differential equations, Springer (1985).

  38. J. Topper and T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Jpn. 44, 663 (1978).

    Article  MathSciNet  Google Scholar 

  39. E. Trubowitz, The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30, 321–337 (1977).

    MATH  MathSciNet  Google Scholar 

  40. D. Zwillinger,Handbook of differential equations, p. 523, Academic Press, New York (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Michael Tabor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ercolani, N.M., McLaughlin, D.W. & Roitner, H. Attractors and transients for a perturbed periodic KdV equation: A nonlinear spectral analysis. J Nonlinear Sci 3, 477–539 (1993). https://doi.org/10.1007/BF02429875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02429875

Key words

Navigation