Skip to main content
Log in

An impetus-striction simulation of the dynamics of an elastica

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

This article concerns the three-dimensional, large deformation dynamics of an inextensible, unshearable rod. To enforce the conditions of inextensibility and unshearability, a technique we call the impetus-striction method is exploited to reformulate the constrained Lagrangian dynamics as an unconstrained Hamiltonian system in which the constraints appear as integrals of the evolution. We show here that this impetus-striction formulation naturally leads to a numerical scheme which respects the constraints and conservation laws of the continuous system. We present simulations of the dynamics of a rod that is fixed at one end and free at the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Antman,Nonlinear Problems of Elasticity, (Springer-Verlag, New York, 1994).

    Google Scholar 

  2. V. I. Arnold, V. V. Kozlov & A. I. Neishtadt. Mathematical aspects of classical and celestial mechanics, inDynamical Systems III, Encyclopœdia of the Mathematical Sciences Volume 3, ed. V. I. Arnold, (Springer-Verlag, New York, 1988).

    Google Scholar 

  3. O. Bottema & B. Roth.Theoretical Mechanics (Dover, 1979).

  4. K. E. Brenan, S. L. Campbell & L. R. Petzold,Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, (SIAM, Philadelphia, 1995).

    Google Scholar 

  5. J. M. Charap, ed.Geometry of Constrained Dynamical Systems (Publications of the Newton Institute, Cambridge Press, 1995).

  6. D. J. Dichmann. Hamiltonian Dynamics of an Elastica and Stability of Solitary Waves. Ph.D. thesis, University of Maryland (1994).

  7. D. J. Dichmann, Y. W. Li & J. H. Maddocks. Hamiltonian formulations and symmetries in rod mechanics, inMathematical Approaches to Biomolecular Structure and Dynamics, J. P. Mesiroy, K. Schulten & D. W. Sumners, eds., IMA Volumes in Mathematics and Its Applications,82, (Springer-Verlag, New York, 1996), 71–113.

    Google Scholar 

  8. D. J. Dichmann, J. H. Maddocks & R. L. Pego. Hamiltonian dynamics of an elastica and the stability of solitary waves.Arch. Rat. Mech. Anal. To appear.

  9. D. J. Dichmann, J. H. Maddocks & J. M. Xu. Three-dimensional Hamiltonian dynamics of an elastica. In preparation.

  10. P. A. M. Dirac. On generalized Hamiltonian dynamics,Can. J. Math. 2 (1950) 129–148.

    MATH  MathSciNet  Google Scholar 

  11. O. Gonzalez. Mechanical systems subject to holonomic constraints: unconstrained formulations and conservative integration.Physica D, submitted.

  12. O. Gonzalez & J. C. Simo. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity.Comput. Methods Appl. Mech. Eng., submitted.

  13. J. Junkins & J. Turner,Optimal Spacecraft Rotational Maneuvers, (Elsevier, Amsterdam, 1986).

    Google Scholar 

  14. I. Klapper. Biological applications of the dynamics of twisted elastic rods.J. Comput. Phys. To appear.

  15. F. Klein & A. Sommerfeld.Über die Theorie des Kriesels (Johnson Reprint, 1965).

  16. B. Leimkuhler & S. Reich. Symplectic integration of constrained Hamiltonian systems.Math. Comp. 63 (1994) 589–605.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Leimkuhler & R. Skeel. Symplectic numerical integrators in constrained Hamiltonian systems,J. Comp. Phys. 112 (1994) 117–125.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. H. Maddocks & D. J. Dichmann. Conservation laws in the dynamics of rods.J. Elasticity 34 (1994) 83–96.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. H. Maddocks & R. L. Pego. An unconstrained Hamiltonian formulation for incompressible fluid flow.Comm. Math. Phys. 170 (1995) 207–217.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. M. Sanz-Serna and M. P. Calvo.Numerical Hamiltonian Problems, (Chapman & Hall, New York, 1994).

    Google Scholar 

  21. J. C. Simo, N. Tarnow & M. Doblare. Nonlinear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms.Int. J. Numer. Methods Eng. 38 (1995) 1431–1473.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. C. Simo & L. Vu-Quoc. A three-dimensional finite-strain rod model. Part II: Computational aspects.Comput. Methods Appl. Mech. Eng. 58 (1986) 79–116.

    Article  MATH  Google Scholar 

  23. J. C. Simo & L. Vu-Quoc. On the dynamics in space of rods undergoing large motions: A geometrically exact approach.Comput. Methods Appl. Mech. Eng. 66 (1988) 125–161.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Tabor & I. Klapper. Dynamics of twist and writhe and the modeling of bacterial fibers, inMathematical Approaches to Biomolecular Structure and Dynamics, J. P. Mesirov, K. Schulten & D. W. Sumners, eds., IMA Volumes in Mathematics and Its Applications,82, (Springer-Verlag, New York, 1996), 139–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Jerrold Marsden and Stephen Wiggins

Dedication: Juan Simo and I shared many common interests in Hamiltonian systems, stability analyses, and the theory of rods. We rarely agreed on the best way of viewing problems, but we both always enjoyed debating the issues. He would undoubtedly have held strong opinions about this article, which is dedicated to him. He is sorely missed.

This paper was solicited by the editors to be part of a volume dedicated to the memory of Juan Simo.

Research supported by the NSF, NASA GSFC and Computer Sciences Corporation.

Research supported by AFOSR and ONR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dichmann, D.J., Maddocks, J.H. An impetus-striction simulation of the dynamics of an elastica. J Nonlinear Sci 6, 271–292 (1996). https://doi.org/10.1007/BF02439312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02439312

Keywords

Navigation