Skip to main content
Log in

Fitting an extended INDSCAL model to three-way proximity data

  • Published:
Journal of Classification Aims and scope Submit manuscript

Abstract

The INDSCAL individual differences scaling model is extended by assuming dimensions specific to each stimulus or other object, as well as dimensions common to all stimuli or objects. An “alternating maximum likelihood” procedure is used to seek maximum likelihood estimates of all parameters of this EXSCAL (Extended INDSCAL) model, including parameters of monotone splines assumed in a “quasi-nonmetric” approach. The rationale for and numerical details of this approach are described and discussed, and the resulting EXSCAL method is illustrated on some data on perception of musical timbres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AIKAKE, H. (1974), “A New Look at the Statistical Model,”IEEE Transactions on Automatic Control, 48, 575–595.

    Google Scholar 

  • ARABIE, P., and CARROLL J. D. (1980), “MAPCLUS: A Mathematical Programming Approach to Fitting the ADCLUS Model,”Psychometrika, 45, 211–235.

    Google Scholar 

  • CARROLL, J. D. (1976), “Spatial, Non-spatial and Hybrid Models for Scaling,”Psychometrika, 41, 439–463.

    Google Scholar 

  • CARROLL, J. D. (1988), “Degenerate Solutions in the Nonmetric Fitting of a Wide Class of Models for Proximity Data,” Unpublished manuscript, AT&T Bell Laboratories, Murray Hill, NJ.

    Google Scholar 

  • CARROLL, J. D., and ARABIE, P. (1983), “INDCLUS: An Individual Differences Generalization of the ADCLUS Model and the MAPCLUS Algorithm,”Psychometrika, 48, 157–169.

    Google Scholar 

  • CARROLL, J. D., and CHANG, J. J. (1970), “Analysis of Individual Differences in Multidimensional Scaling via an N-way Generalization of Eckart-Young Decomposition,”Psychometrika, 35, 283–319.

    Google Scholar 

  • CARROLL, J. D., and PRUZANSKY, S. (1980), “Discrete and Hybrid Scaling Models,” inSimilarity and Choice, Eds., E. D. Lantermann and H. Feger, Bern: Hans Huber, 108–139.

    Google Scholar 

  • DE SOETE, G., (1988), “Tree Representations of Proximity Data by Least Squares Methods,” inClassification and Related Methods of Data Analysis, Ed., H. H. Bock, North-Holland: Elsevier, 147–156.

    Google Scholar 

  • DE SOETE, G., CARROLL, J. D., and CHATURVEDI, A. D. (1993), “A Modified CANDECOMP Method for Fitting the Extended INDSCAL Model,”Journal of Classification, 10, 75–92.

    Google Scholar 

  • DESARBO, W. S. (1982), “GENNCLUS: New Models for General Nonhierarchical Clustering Analysis,”Psychometrika, 47, 449–475.

    Google Scholar 

  • DILLON, J. (1990), “Introitus,” London: Edition Peters No. 7408.

    Google Scholar 

  • GILL, P. E., MURRAY, W., and WRIGHT, M. H. (1981),Practical Optimization, New York: Academic Press.

    Google Scholar 

  • GREY, J. M. (1975), “An Exploration of Musical Timbre,” Unpublished manuscript, Ph.D. Dissertation, Stanford University, Dept. of Music Report STAN-M-2.

  • GUTTMAN, L. (1968), “A General Nonmetric Technique for Finding the Smallest Space for a Configuration of Points,”Psychometrika, 33, 465–506.

    Google Scholar 

  • KIEFER, J., and WOLFOWITZ, J. (1956), “Consistency of the Maximum Likelihood Estimator in the Presence of Infinitely Many Incidental Parameters,”Annals of Mathematical Statistics, 27, 887–906.

    Google Scholar 

  • KRUMHANSL, C. L. (1989), “Why is Musical Timbre So Hard to Understand?” inStructure and perception of Electroacoustic Sound and Music, Eds., S. Nielzen and O. Ohlsson, Amsterdam: Elsevier, 43–53.

    Google Scholar 

  • KRUSKAL, J. B. (1964a), “Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis,”Psychometrika, 29, 1–29.

    Google Scholar 

  • KRUSKAL, J. B. (1964b), “Nonmetric Multidimensional Scaling: A Numerical Method,”Psychometrika, 29, 115–129.

    Google Scholar 

  • KRUSKAL, J. B. (1976), “More Factors than Subjects, Tests and Treatments: An Indeterminacy Theorem for Canonical Decomposition and Indicidual Differences Scaling,”Psychometrika, 41, 281–293.

    Google Scholar 

  • KRUSKAL, J. B., and CARMONE F. (1969), “How to Use M-D-SCAL (version 5M) and other Useful Information,” Unpublished manuscript, AT&T Bell Laboratories, Murray Hill, NJ.

    Google Scholar 

  • KRUSKAL, J. B., and CARROLL, J. D. (1969), “Geometric Models and Badness-of-Fit Functions,” inMultivariate Analysis, Ed., P. R. Krishnaiah, New York: Academic press, 639–671.

    Google Scholar 

  • KRUSKAL, J. B., YOUNG, F. W., and SEERY, J. B. (1977), “How to Use KYST-2A: A Very Flexible Program to do Multidimensional Scaling and Unfolding,” Unpublished manuscript, AT&T Bell Laboratories; Murray Hill, NJ.

    Google Scholar 

  • NEYMAN, J., and SCOTT, E. L. (1948), “Consistent Estimates on Partially Consistent Observation,”Econometrica, 16, 1–32.

    Google Scholar 

  • PRUZANSKY, S., TVERSKY, A., and CARROLL, J. D. (1982), “Spatial Versus Tree Representations of Proximity Data,”Psychometrika, 47, 3–24.

    Google Scholar 

  • RAMSAY, J. (1978), “Confidence Regions for Multidimensional Scaling Analysis,”Psychometrika, 43, 145–160.

    Google Scholar 

  • RAMSAY, J. (1980), “The Joint Analysis of Direct Ratings, Pairwise Preferences, and Dissimilarities,”Psychometrika, 45, 149–165.

    Google Scholar 

  • RISSET, J. C. (1986), “Son Musical et Perception Auditive,”Pour la Science, 109, 32–51.

    Google Scholar 

  • SCHWARTZ, G. (1978), “Estimating the Dimensions of a Model,”Annals of Statistics, 6, 461–464.

    Google Scholar 

  • SHEPARD, R. N., and ARABIE, P. (1979), “Additive Clustering: Representation of Similarities as Combinations of Discrete Overlapping Properties,”Psychometrika, 86, 87–123.

    Google Scholar 

  • TAKANE, Y., YOUNG, F. W., and DE LEEUW, J. (1977), “Nonmetric Individual Differences Multidimensional Scaling: An Alternating Least-Squares Method with Optimal Scaling Features,”Psychometrika, 42, 7–67.

    Google Scholar 

  • WESSEL, D. L. (1973), “Psychoacoustics and Music,”Bulletin of the Computer Arts Society, 30, 1–2.

    Google Scholar 

  • WESSEL, D. L., BRISTOW, D., and SETTEL, Z. (1987), “Control of Phrasing and Articulation in Synthesis,”Proceedings of the 1987 International Computer Music Conference, Computer Music Association, San Francisco, 108–116.

  • WINSBERG, S. (1988), “Two Techniques: Monotone Spline Transformations for Dimension Reduction in PCA and Easy-to-Generate Metrics for PCA of Sampled Functions,” inComponent and Correspondence Analysis, Eds., J. van Rijckevorsel and J. de Leeuw, London: Wiley, 115–135.

    Google Scholar 

  • WINSBERG, S., and CARROLL, J. D. (1989a), “A Quasi-Nonmetric Method for Multidimensional Scaling of Multiway Data via a Restricted Case of an Extended INDSCAL Model,” inMultiway Data Analysis, Eds., R. Coppi and S. Belasco, North Holland: Elsevier, 405–414.

    Google Scholar 

  • WINSBERG, S., and CARROLL, J. D. (1989b), “A Quasi-Nonmetric Method for Multidimensional Scaling via an Extended Euclidean Model,”Psychometrika, 54, 217–229.

    Google Scholar 

  • WINSBERG, S., and RAMSAY, J. O. (1980), “Monotonic Transformations to Additivity Using Splines,”Biometrika, 67, 669–674.

    Google Scholar 

  • WINSBERG, S., and RAMSAY, J. O. (1983), “Monotone Spline Transformations for Dimension Reduction,”Psychometrika, 48, 575–595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, J.D., Winsberg, S. Fitting an extended INDSCAL model to three-way proximity data. Journal of Classification 12, 57–71 (1995). https://doi.org/10.1007/BF01202267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202267

Key Words

Navigation