Skip to main content
Log in

On the iterated prisoner's dilemma in a finite population

  • Behavioural Ecology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Two standard assumptions in analytical work on the iterated prisoner's dilemma are that the population is infinite, and that opponents—though randomly selected—are fixed for the duration of the game. This paper explores the consequences of relaxing both assumptions. It is shown in particular that if opponents are drawn at random throughout the game, then stable cooperation via reciprocity requires both that the probability of a further interaction be sufficiently high—higher than when opponents are fixed—and that the population not exceed a certain critical size, which depends on the probability of further interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Axelrod, R. 1984.The Evolution of Cooperation. New York: Basic Books.

    Google Scholar 

  • Axelrod, R. and D. Dion. 1988. The further evolution of cooperation.Science 242, 1385–1390.

    Google Scholar 

  • Borštnik, B., D. Pumpernik, I. L. Hofacker and G. L. Hofacker. 1990. An ESS-analysis for ensembles of prisoner's dilemma's strategies.J. theor. Biol. 142, 189–200.

    Article  Google Scholar 

  • Boyd, R. and J. P. Lorberbaum. 1987. No pure strategy is evolutionarily stable in the repeated prisoner's dilemma game.Nature 327, 58–59.

    Article  Google Scholar 

  • Boyd, R. and P. J. Richerson. 1988. The evolution of reciprocity in sizable groups.J. theor. Biol. 132, 337–356.

    Article  MathSciNet  Google Scholar 

  • Clark, C. W. 1981. Bioeconomics of the ocean.BioScience 31, 231–237.

    Article  Google Scholar 

  • Clark, C. W. 1990.Mathematical Bioeconomics: the Optimal Management of Renewable Resources, 2nd Edition. New York: John Wiley.

    Google Scholar 

  • Dawkins, R. 1989.The Selfish Gene, 2nd Edition. Oxford: Oxford University Press.

    Google Scholar 

  • Dugatkin, L. A. and M. Alfieri. 1991. Guppies and the TIT for TAT strategy: Preference based on past interaction.Behav. Ecol. Sociobiol. 28, 243–246.

    Article  Google Scholar 

  • Farrell, J. and R. Ware. 1989. Evolutionary stability in the repeated Prisoner's Dilemma.Theor. Pop. Biol. 36, 161–166.

    Article  MATH  MathSciNet  Google Scholar 

  • May, R. M. 1981. The evolution of cooperation.Nature 292, 291–292.

    Google Scholar 

  • May, R. M. 1987. More evolution of cooperation.Nature 327, 15–17.

    Article  Google Scholar 

  • Maynard Smith, J. 1982.Evolution and the Theory of Games. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mesterton-Gibbons, M. 1991. An escape from the prisoner's dilemma.J. math. Biol. 29, 251–269.

    Article  MATH  MathSciNet  Google Scholar 

  • Mesterton-Gibbons, M. 1992.An Introduction to Game-theoretic Modelling. Redwood City, California: Addison-Wesley.

    MATH  Google Scholar 

  • Milinski, M., D. Pfluger, D. Külling and R. Kettler. 1990. Do sticklebacks cooperate repeatedly in reciprocal pairs?Behav. Ecol. Sociobiol. 27, 17–21.

    Article  Google Scholar 

  • Nowak, M. 1990. Stochastic strategies in the prisoner's dilemma.Theor. Pop. Biol. 38, 93–112.

    Article  MATH  Google Scholar 

  • Nowak, M. and K. Sigmund. 1989. Game-dynamical aspects of the prisoner's dilemma.Appl. math. Comp. 30, 191–213.

    Article  MATH  MathSciNet  Google Scholar 

  • Nowak, M. and K. Sigmund. 1990. The evolution of stochastic strategies in the prisoner's dilemma.Acta. appl. Math. 20, 247–265.

    Article  MATH  MathSciNet  Google Scholar 

  • Schelling, T. C. 1978.Micromotives and Macrobehavior. New York: Norton.

    Google Scholar 

  • Taylor, P. and L. Jonker. 1978. Evolutionarily stable strategies and game dynamics.Math. Biosci. 40, 145–156.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesterton-Gibbons, M. On the iterated prisoner's dilemma in a finite population. Bltn Mathcal Biology 54, 423–443 (1992). https://doi.org/10.1007/BF02464842

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464842

Keywords

Navigation