Skip to main content
Log in

Titrimetric determination of α-substituted cystines and α-substituted cysteines with N-Bromosuccinimide

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Summary

N-Bromosuccinimide has been employed as a titrant for the determination of α-substituted DL-cystines and α-substituted DL-cysteines. Using NBS and Bordeaux Red indicator, quantitative recoveries in the 1–5 mg range were obtained for L-cystine, L-cysteine, L-methionine, and the α-substituted DL-cystines. With NBS and the iodine displa'cement procedure, quantitative recoveries in the 10--20 mg range were obtained for L-cysteine and the s-substituted DL-cysteines.

Zusammenfassung

N-Bromsuccinimid (NBS) wurde zur Titration von α-substituierten DL-Cystinen sowie DL-Cysteinen herangezogen. Mit Bordeaux-Rot als Indikator erhält man quantitative Ergebnisse im Bereich von 1–5 mgL-Cystin,L-Cystein,L-Methionin bzw. α-substituierten DL-Cystinen. Mit Hilfe des Jodverdrängungsverfahrens führt NBS zu quantitativen Ergebnissen im Bereich von 10–20 mgL-Cysteine bzw. α-substituierten DL-Cysteinen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. D. Cheronis andT. S. Ma, Organic Functional Group Analysis. New York: Wiley. 1964. p. 320.

    Google Scholar 

  2. F. P. Chinard andL. Hellerman, Determination of Sulfhydryl Groups in Certain Biological Substances, inD. Glock (ed.), Methods of Biochemical Analysis, Vol. 1. New York: Interscience. 1954. p. 1.

    Google Scholar 

  3. P. D. Boyer, J. Amer. Chem. Soc.76, 4331 (1954).

    Google Scholar 

  4. J. D. Gregory, J. Amer. Chem. Soc.77, 3922 (1955).

    Google Scholar 

  5. E. Friedmann, D. H. Marrian andI. Simon-Reves, Brit. J. Pharmacol.4, 105 (1949).

    Google Scholar 

  6. J. Leslie, D. L. Williams, andG. Gorin, Analyt. Biochem.3, 257 (1962).

    Google Scholar 

  7. T. C. Tsao andK. Baily, Biochem. Biophys. Acta11, 102 (1953).

    Google Scholar 

  8. D. R. Grassetti andJ. F. Murray, Arch. Biochem. Biophys.119, 41 (1967).

    Google Scholar 

  9. G. L. Ellman, Arch. Biochem. Biophys.82, 70 (1959).

    Google Scholar 

  10. E. Roberts andG. Rouser, Analyt. Chemistry30, 1291 (1958).

    Google Scholar 

  11. R. J. Block andD. Bolling, The Amino Acid Composition of Proteins and Foods, 2nd ed., Springfield: C. C. Thomas. 1951.

    Google Scholar 

  12. H. D. Baernstein, J. Biol. Chem.115, 33 (1936).

    Google Scholar 

  13. C. C. Lucas andE. J. King, Biochem. J.26, 2076 (1932).

    Google Scholar 

  14. A. H. Romano andW. J. Nickerson, J. Biol. Chem.208, 409 (1954).

    Google Scholar 

  15. W. J. Nickerson andA. H. Romano, Science115, 676 (1952).

    Google Scholar 

  16. Y. Okuda, J. Biochem., Japan5, 217 (1925).

    Google Scholar 

  17. H. D. Baernstein, J. Biol. Chem.89, 125 (1930).

    Google Scholar 

  18. G. E. Woodward andE. G. Fry, J. Biol. Chem.97, 465 (1932).

    Google Scholar 

  19. N. I. Proskuryakov andI. D. Buachidze, Biokhimiya21, 822 (1956).

    Google Scholar 

  20. E. S. Zueva andN. I. Proskuryakov, Biokhimiya28, 316 (1963).

    Google Scholar 

  21. I. D. Kasatkina andE. T. Zheltova, Mikrobiologiya32, 973 (1963).

    Google Scholar 

  22. R. Filler, Chem. Rev.63, 21 (1963).

    Google Scholar 

  23. S. D. Ross, M. Finkelstein, andR. C. Petersen, J. Amer. Chem. Soc.80, 4327 (1958).

    Google Scholar 

  24. M. Sarwar andR. J. Thibert, Analytical Letters1, 381 (1968).

    Google Scholar 

  25. R. J. Thibert andM. Sarwar, Microchem. J.14, 271 (1969).

    Google Scholar 

  26. J. E. Carrol, M. Sc. Thesis, University of Windsor, Ontario 1969.

    Google Scholar 

  27. R. J. Thibert, M. Sarwar, andJ. E. Carrol, Mikrochim. Acta [Wien]1969, 615.

  28. R. J. Thibert andM. Sarwar, Mikrochim. Acta [Wien]1969, 259.

  29. R. J. Thibert, J. F. G. Diederich, andG. W. Kosicki, Can. J. Biochem.45, 1595 (1967).

    Google Scholar 

  30. R. J. Thibert, J. F. G. Diederich, andK. G. Rutherford, Can. J. Chem.43, 205 (1965).

    Google Scholar 

  31. J. F. G. Diederich, Ph. D. Thesis, University of Windsor, Ontario. 1967.

    Google Scholar 

  32. S. P. L. Sørensen, Biochem. Z.22, 352 (1909).

    Google Scholar 

  33. A. F. Holleman, inH. Gilman andA. H. Blatt (eds.) Organic Synthesis, Collective Vol. 1, New York: Wiley. 1941. p. 554.

    Google Scholar 

  34. M. Z. Barakat andS. K. Shehab, Analyst90, 50 (1965).

    Google Scholar 

  35. M. Z. Barakat andM. Shakar, Analyst88, 59 (1963).

    Google Scholar 

  36. L. F. Fieser andS. Rajagoplan, J. Amer. Chem. Soc.71, 3935 (1949).

    Google Scholar 

  37. J. E. Carroll, G. W. Kosicki, andR. J. Thibert, Biochim. Biophys. Acta198, 601 (1970).

    Google Scholar 

  38. P. O. Schneider, unpublished work.

  39. T. F. Draisey, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, P.O., Thibert, R.J. & Walton, R.J. Titrimetric determination of α-substituted cystines and α-substituted cysteines with N-Bromosuccinimide. Mikrochim Acta 60, 925–934 (1972). https://doi.org/10.1007/BF01239159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01239159

Keywords

Navigation