Skip to main content
Log in

Determination of tranexamic acid (AMCA) and fibrin/fibrinogen degradation products in cerebrospinal fluid after aneurysmal subarachnoid haemorrhage

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Six patients with recently ruptured intracranial aneurysms were treated preoperatively with tranexamic acid (AMCA). Two patients received 6 g daily in i.v. infusion, two had 6 g daily by i.v. injection, and two patients were given AMCA 9 g daily by mouth during the first week after bleeding. Serial assays of AMCA and fibrin/fibrinogen degradation products (FDP) in cerebrospinal fluid (CSF) were performed during 6–13 days after the initial subarachnoid haemorrhage (SAH). Judged from the decline in CSF-FDP, an assumed therapeutic level of ≥ 1 mg/l of AMCA in CSF was reached within 24–36 hours after the first dose when the drug was administered intravenously and within 48 hours when the drug was given orally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez Garijo, J. A., Vilches, J. J., Aznar, J. A., Preoperative treatment of ruptured intracranial aneurysms with tranexamic acid and monitoring of fibrinolytic activity. J. Neurosurg.52 (1980), 453–455.

    PubMed  Google Scholar 

  2. Andersson, L., Eriksson, O., Hedlund, P. O., Kjellmann, H., Lindqvist, B., Special considerations with regard to the dosage of tranexamic acid in patients with chronic renal diseases. Urol. Res.2 (1978), 83–88.

    Google Scholar 

  3. Andersson, L., Nilsson, I. M., Colleen, S., Granstrand, B., Melander, B., Role of urokinase and tissue activator in sustaining bleeding and the management thereof with EACA and AMCA. Ann. N.Y. Acad. Sci.146 (1968), 642–658.

    PubMed  Google Scholar 

  4. Andersson, L., Nilsson, I. M., Niléhn, J. E., Hedner, U., Granstrand, B., Melander, B., Experimental and clinical studies on AMCA, the antifibrinolytically active isomer of p-aminomethyl cyclohexane carboxylic acid. Scand. J. Haematol.2 (1965), 230–247.

    PubMed  Google Scholar 

  5. Botterell, E. H., Lougheed, W. M., Scott, J. W., Vanderwater, S. L., Hypothermia and interruption of carotid, or carotid and vertebral circulation, in the surgical treatment of intracranial aneurysms. J. Neurosurg.13 (1956), 1–42.

    PubMed  Google Scholar 

  6. Brueton, M. J., Breeze, G. R., Stuart, J., Fibrin-fibrinogen degradation products in cerebrospinal fluid. J. Clin. Pathol.29 (1976), 341–344.

    PubMed  Google Scholar 

  7. Brueton, M. J., Tugwell, P., Whittle, H. C., Greenwood, B. M., Fibrin degradation products in the serum and cerebrospinal fluid of patients with group A-meningococcal meningitis. J. Clin. Pathol.27 (1974), 402–404.

    PubMed  Google Scholar 

  8. Chandra, B., Treatment of subarachnoid hemorrhage from ruptured intracranial aneurysm with tranexamic acid: A double-blind clinical trial. Ann. Neurol.3 (1978), 502–504.

    PubMed  Google Scholar 

  9. Donner, L., Housková, J., Fibrinolytic activity of tissues in some experimental animals. In: Acta of the First International Symposium on Tissue Factors in Homeostasis of the Coagulation-Fibrinolysis System, pp. 319–328. Florence 1967.

  10. Dubber, A. H. C., McNicol, G. P., Douglas, A. S., Amino methyl cyclohexane carboxylic acid (AMCHA). A new synthetic fibrinolytic inhibitor. Br. J. Haemat.11 (1965), 237–245.

    Google Scholar 

  11. Dubber, A. H. C., McNicol, G. P., Douglas, A. S., Melander, B., Some properties of the antifibrinolytically active isomer of amino-methylcyclohexane carboxylic acid. LancetII (1964), 1317–1319.

    Google Scholar 

  12. Eriksson, O., Kjellman, H., Pilbrant, Å., Schannong, M., Pharmacokinetics of tranexamic acid after intravenous administration to normal volunteers. Eur. J. Clin. Pharmacol.7 (1974), 375–380.

    PubMed  Google Scholar 

  13. Filizzolo, F., D'Angelo, V., Collice, M., Ferrara, M., Donati, M. B., Porta, M., Fibrinolytic activity in blood and cerebrospinal fluid in subarachnoid hemorrhage from ruptured intracranial saccular aneurysm before and during EACA treatment. Eur. Neurol.17 (1978), 43–47.

    PubMed  Google Scholar 

  14. Fodstad, H., Forssell, Å., Liliequist, B., Schannong, M., West, K. A., Antifibrinolytics and subarachnoid haemorrhage: Results from two controlled clinical trials using tranexamic acid (AMCA). Acta neurochir. (Wien)51 (1979), 131 (Abstr.).

    Google Scholar 

  15. Fodstad, H., Liliequist, B., Schannong, M., Thulin, C.-A., Tranexamic acid in the preoperative management of ruptured intracranial aneurysms. Surg. Neurol.10 (1978), 9–15.

    PubMed  Google Scholar 

  16. Hassler, O., Fodstad, H., Fibrinolytic activity in the walls of cerebral saccular aneurysms. Acta neurochir. (Wien)37 (1977), 49–55.

    Google Scholar 

  17. Hellinger, J., Vogel, G., Untersuchungen über die fibrinolytische Aktivität des Liquor cerebrospinalis und ihre Beeinflußbarkeit durch PAMBA. Folia Haematol. (Leipzig)87 (1967), 61–66.

    Google Scholar 

  18. Kaller, H., Enterale Resorption, Verteilung und Elimination von 4-Aminomethylcyclohexancarbonsäure (AMCHA) und e-Aminocapronsäure (ACS) beim Menschen. Naunyn-Schmiedebergs Arch. Pharmacol.256 (1967), 160–168.

    Google Scholar 

  19. Kaste, M., Ramsay, M., Tranexamic acid in subarachnoid hemorrhage. A double-blind study. Stroke10 (1979), 519–522.

    PubMed  Google Scholar 

  20. Levy, B. J., Silver, D., Treatment of subarachnoid hemorrhage: The ability of epsilon aminocaproic acid to cross the blood brain barrier and reduce the spinal fluid fibrinolytic activity. Surg. Forum19 (1968), 413–414.

    PubMed  Google Scholar 

  21. Locksley, H. B., Report on the cooperative study of intracranial aneurysm and subarachnoid hemorrhage. Section V. Part II. Natural history of subarachnoid hemorrhage, intracranial aneurysms and arteriovenous malformations. Based on 6,368 cases in the cooperative study. J. Neurosurg.25 (1966), 321–368.

    PubMed  Google Scholar 

  22. Maurice-Williams, R. S., Prolonged antifibrinlysis: an effective non-surgical treatment for ruptured intracranial aneurysms? Brit. Med. J.1 (1978), 945–947.

    PubMed  Google Scholar 

  23. Maurice-Williams, R. S., Gordon, Y. B., Sykes, A., Monitoring fibrinolytic activity in the cerebrospinal fluid after subarachnoid haemorrhage: a guide to the risk of rebleeding? J. Neurol. Neurosurg. Psychiat.43 (1980), 175–181.

    PubMed  Google Scholar 

  24. Mihara, H., Fujii, T., Okamoto, S., Fibrinolytic activity of cerebrospinal fluid and the development of artificial cerebral haemorrhage. Thrombos. Diathes. haemorrh. (Stuttg.)21 (1969), 294–303.

    Google Scholar 

  25. Niléhn, J.-E., Split products of fibrinogen after prolonged interaction with plasmin. Thrombos. Diathes. haemorrh. (Stuttg.)18 (1967 a), 89–100.

    Google Scholar 

  26. Niléhn, J.-E., Separation and estimation of “split products” of fibrinogen and fibrin in human serum. Thrombos. Diathes. haemorrh. (Stuttg.)18 (1967 b), 487–498.

    Google Scholar 

  27. Nilsson, I. M., Haemorrhagic and Thrombotic Diseases, 228 pp. London-New York-Sydney-Toronto: J. Wiley & Sons. 1974.

    Google Scholar 

  28. Norlén, G., Thulin, C.-A., Antifibrinolytisk behandling vid intrakraniell aneurysmblödning. Läkartidningen65 (1968), 2910–2912.

    Google Scholar 

  29. Pilbrant, Å., Schannong, M., Vessman, J., Sci. Rep. 79 99 041, Data on file, Kabi AB, Stockh. Sweden, 1979.

    Google Scholar 

  30. Porter, I. M., Acinapura, A. J., Kapp, J. P., Silver, D., Fibrinolytic activity of the spinal fluid and meninges. Surg. Forum17 (1966), 425–427.

    PubMed  Google Scholar 

  31. Rossum, J. van, Wintzen, A. R., Endtz, L. J., Schoen, J. H. R., Jonge, H., Effect of tranexamic acid on rebleeding after subarachnoid hemorrhage: A double-blind controlled clinical trial. Ann. Neurol. (1977), 238–242.

  32. Smith, R. S., Upchurch, J. J., Monitoring antifibrinolytic therapy in subarachnoid hemorrhage. J. Neurosurg.38 (1973), 339–344.

    PubMed  Google Scholar 

  33. Tanaka, M., Studies on the fibrinolytic system in cerebrospinal fluid and brain tissue. Arch. Jap. Chir.29 (1960), 449–456.

    Google Scholar 

  34. Tovi, D., Nilsson, I. M., Increased fibrinolytic activity and fibrin degradation products after experimental intracerebral haemorrhage. Acta Neurol. Scand.48 (1972), 403–415.

    PubMed  Google Scholar 

  35. Tovi, D., Nilsson, I. M., Thulin, C.-A., Fibrinolysis and subarachnoid-haemorrhage. Inhibitory effect of tranexamic acid. A clinical study. Acta Neurol. Scand.48 (1972), 393–402.

    PubMed  Google Scholar 

  36. Tovi, D., Nilsson, I. M., Thulin, C.-A., Fibrinolytic activity of the cerebrospinal fluid after subarachnoid haemorrhage. Acta Neurol. Scand.49 (1973), 1–9.

    PubMed  Google Scholar 

  37. Tovi, D., Thulin, C.-A., Ability of tranexamic acid to cross the blood-brain barrier and its use in patients with ruptured intracranial aneurysms. Acta Neurol. Scand.48 (1972), 257 (Abstr.).

    Google Scholar 

  38. Vessman, J., Strömberg, S., Determination of tranexamic acid in biological material by election capture gas chromatography after direct derivatization in an aqueous medium. Analyt. Chem.49 (1977), 369–373.

    Google Scholar 

  39. Åstedt, B., Liedholm, P., Tranexamic acid and fibrinolytic activity of the vessel wall. Experientia30 (1974),776–777.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fodstad, H., Pilbrant, A., Schannonǵ, M. et al. Determination of tranexamic acid (AMCA) and fibrin/fibrinogen degradation products in cerebrospinal fluid after aneurysmal subarachnoid haemorrhage. Acta neurochir 58, 1–13 (1981). https://doi.org/10.1007/BF01401679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01401679

Keywords

Navigation