Skip to main content
Log in

Transition metal chemistry of oxime containing ligands, VII

Übergangsmetallkomplexe mit Oxim-enthaltenden Liganden, VII. Elektronische und strukturelle Eigenschaften vonFe(II)-undCr(III)-Komplexen mit Pyridin-2-aldoxim

Electronic and structural properties of iron(II) and chromium(III) complexes containing pyridine-2-aldoxime

  • Inorganic, Structural, and Physical Chemistry
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

Complexes of pyridine-2-aldoxime (Hpox) with iron(II) and chromium(III) of type, [Fe(Hpox)2 X 2] (X=Cl, Br, I or NCS); [Cr(Hpox)3]Cl3·3 H2O; [Cr(Hpox)2 X 2]ClO4 (X=F, Cl or Br) and [Cr(Hpox)2(H2O)2]Br3·H2O were prepared and characterized by analytical X-ray powder diffraction, magnetism, vibrational (conventional and far-infrared) and electronic spectroscopy techniques. X-ray and electronic spectral data indicate that all the complexes except [Cr(Hpox)3]Cl3·3 H2O havetrans-pseudo-octahedral microsymmetry around the metal ion. Infrared spectral data indicate that the ligand, Hpox, behaves like a neutral ligand and coordinates to the metal ion through pyridine nitrogen atom and oxime nitrogen atom in all these complexes. The magnetic susceptibilities of chromium(III) complexes, measured over a temperature range 300–78 K, are independent of temperature whereas the magnetic moments of iron(II) complexes over a temperature range 300–20 K are dependent of temperature. The observed temperature dependence of magnetic moments of iron(II) complexes was used to evaluate the magnitude of orbital reduction factor,k, the low-symmetry distortion parameter, Δ, and the extent of reduction in spin-orbital coupling, λ. In all these iron(II) complexes the magnetic results indicate the presence of an orbitally non-degenerate,5B2g, ground state. Magnetically unperturbed and perturbedMössbauer spectra of iron(II) complexes at various temperatures have also been reported. Magnetically perturbedMössbauer spectra of iron(II) complexes at 4.2 K in an axial field of 60kGauss indicate that the principal component of electric field gradient tensor is positive and consistent with5B2g ground electronic state in a tetragonal (D 4h) local site symmetry.

Zusammenfassung

Es wurden Komplexe von Pyridin-2-aldoxim (Hpox) mit Fe(II) und Cr(III) vom Typ [Fe(Hpox)2 X 2] (X=Cl, Br, I, NCS), [Cr(Hpox)3]Cl3·3 H2O, [Cr(Hpox)2 X 2]ClO4 (X=F, Cl, Br) und [Cr(Hpox)2(H2O)2]Br3·H2O hergestellt. Charakterisierung und Diskussion von Geometrie und Bindungsverhalten in den Komplexen erfolgte auf Grund von analytischen Daten, Röntgen-Pulveraufnahmen, Elektronenanregungsspektroskopie, Infrarotspektroskopie, magnetischen Messungen undMössbauer-Spektroskopie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Less, F. Holmes, A. E. Underhill, andD. B. Powell, J. Chem. Soc.A 1971, 337.

  2. F. Holmes, G. Lees, andA. E. Underhill, J. Chem. Soc.A 1971, 999.

  3. M. Mohan, H. C. Khera, S. G. Mittal, andA. K. Sirivastava, Acta Chim. (Hung.)91, 417 (1976).

    Google Scholar 

  4. M. Mohan, H. C. Khera, S. G. Mittal, andA. K. Sirivastava, Curr. Sci.46, 211 (1977).

    Google Scholar 

  5. M. Mohan, H. C. Khera, S. G. Mittal, andA. K. Sirivastava, Indian J. Chem.15 A, 696 (1977).

    Google Scholar 

  6. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Gazz. Chim. Italiana107, 393 (1977).

    Google Scholar 

  7. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Gazz. Chim. Italiana108, 585 (1978).

    Google Scholar 

  8. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Mh. Chem.109, 357 (1978).

    Google Scholar 

  9. G. Brauer, Handbook of Preparative Inorganic Chemistry,2, 1359. New York: Academic Press. 1963.

    Google Scholar 

  10. F. J. Welcher, The Analytical uses of E.D.T.A. Van Nostrand Company, Inc. 1965.

  11. I. Sotofte andS. E. Rasmussen, Acta Chem. Scand.21, 2028 (1967).

    Google Scholar 

  12. R. A. Krause, N. B. Colthup, andD. H. Busch, J. Phys. Chem.65, 2216 (1961).

    Google Scholar 

  13. R. E. Rundle andM. Parasol, J. Chem. Phys.20, 1487 (1952).

    Google Scholar 

  14. A. Fujita, A. Nakahara, andR. Tsuchida, J. Chem. Phys.23, 1541 (1955).

    Google Scholar 

  15. P. E. Figgins andD. H. Busch, J. Phys. Chem.65, 2236 (1961).

    Google Scholar 

  16. S. P. Sinha, Spectrochim Acta20, 879 (1964).

    Google Scholar 

  17. J. H. S. Green, W. Kynaston, andH. M. Paisley, Spectrochim Acta19, 549 (1963).

    Google Scholar 

  18. N. S. Gill andH. J. Kingdon, Aust. J. Chem.19, 2197 (1966).

    Google Scholar 

  19. G. Zerbi, J. Overend, andB. Grawford, J. Chem. Phys.38, 122 (1963).

    Google Scholar 

  20. N. S. Gill, R. H. Nuttall, D. E. Scaife, andD. W. A. Sharp, J. Inorg. Nucl. Chem.18, 79 (1961).

    Google Scholar 

  21. J. L. Burmeister, Coordn. Chem. Rev.1, 205 (1966);3, 225 (1968).

    Google Scholar 

  22. B. J. Hathaway andA. E. Underhill, J. Chem. Soc.1961, 3091.

  23. R. J. H. Clark andC. S. Williams, Inorg. Chem.4, 350 (1965).

    Google Scholar 

  24. C. W. Frank andL. B. Rogers, Inorg. Chem.5, 615 (1966).

    Google Scholar 

  25. J. Burgress, Spectrochim Acta24 A, 277 (1968).

    Google Scholar 

  26. R. J. H. Clark andC. S. Williams, Spectrochim Acta23 A, 1055 (1967).

    Google Scholar 

  27. R. G. Inskeep, J. Inorg. Nucl. Chem.24, 763 (1962).

    Google Scholar 

  28. B. N. Figgis, J. Lewis, F. E. Mabbs, andG. A. Webb, J. Chem. Soc.1967, 442.

  29. C. D. Burbridge andD. M. L. Goodgame, J. Chem. Soc.A 1967, 694.

  30. G. A. Renovitch andW. A. Baker, jr., J. Chem. Soc.A 1969, 75.

  31. C. D. Burbridge, D. M. L. Goodgame, andM. Goodgame, J. Chem. Soc.A 1967, 349.

  32. G. M. Bancroft andR. H. Platt, Advan. Inorg. Chem. Radiochem.15, 59 (1972).

    Google Scholar 

  33. D. S. McClure, Advances in the Chemistry of Coordination Compounds, p. 498 (S. Kirschner, ed.). New York: Macmillan. 1961.

    Google Scholar 

  34. A. B. P. Lever, Inorganic Electronic Spectroscopy, p. 205. Amsterdam: Elsevier. 1968.

    Google Scholar 

  35. A. B. P. Lever, Coordn. Chem. Reg.3, 119 (1968).

    Google Scholar 

  36. L. S. Forster, Transition Metal Chem.5, 1 (1969).

    Google Scholar 

  37. J. R. Perumareddi, Coordn. Chem. Rev.4, 73 (1969).

    Google Scholar 

  38. J. G. Lerup andC. E. Schaffer, Progress in Coordination Chemistry, p. 500 (M. Cais, ed.). Amsterdam: Elsevier. 1968.

    Google Scholar 

  39. H. Yamatera, Bull Chem. Soc. Japan31, 95 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, M., Mittal, S.G., Khera, H.C. et al. Transition metal chemistry of oxime containing ligands, VII. Monatshefte für Chemie 111, 63–79 (1980). https://doi.org/10.1007/BF00938718

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00938718

Keywords

Navigation