Skip to main content
Log in

Transition metal chemistry of oxime-containing ligands, IX

Übergangsmetallkomplexe mit Oxim-enthaltenden Liganden, IX. Spektroskopische und magnetische Untersuchungen von Mn(II)- und Fe(II)-Komplexen mit Pyridin-2-aldoxim und 6-Methylpyridin-2-aldoxim

Spectral and magnetic studies of manganese(II) and iron(III) complexes of pyridine-2-aldoxime and 6-methylpyridine-2-aldoxime

  • Anorganische und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

The vibrational (conventional and far-infrared) and diffuse-reflectance spectra in conjunction with magnetic susceptibility measurements over a temperature range down to liquid nitrogen temperature are reported and discussed for the complexes; [Mn(HPOX)2 X 2]; [Mn(HMPX)2 X 2]; [Fe(HPOX)(POX) X 2] and [Fe(HMPX)(MPX) X 2](whereHPOX=pyridine-2-aldoxime (C6H6N2O);POX=C6H5N2O;HMPX=6-Methylpyridine-2-aldoxime (C7H8N2O);MPX=C7H7N2O;X=Cl, Br, I, NO3, NCS, or OA c andX 2=SO4). On the basis of these physical studies a six-coordinated structure is suggested for the manganese(II) and iron(III) complexes.Mössbauer spectra, measured at room-temperature and liquid nitrogen temperature also indicated a six-coordinate geometry for iron(III) complexes.

Zusammenfassung

Es wurden Komplexe von Pyridin-2-aldoxim (HPOX) und 6-Methylpyridin-2-aldoxim (HMPX) vom Typ [Mn(HPOX)2 X 2], [Mn(HMPX)2 X 2], [Fe(HPOX)(POX)X 2] und [Fe(HMPX)(MPX)X 2] (X=Cl, Br, I, NO3, NCS, OA c;X 2=SO4) dargestellt. Die Diskussion erfolgt basierend auf Infrarot-spektroskopie (inklusive fernes IR), Messungen der magnetischen Suszeptibilität (Temp. bis zu fl. N2) undMössbauer-Spektroskopie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chakravorty, Coordn. Chem. Rev.13, 1 (1974).

    Google Scholar 

  2. M. Mohan, H. C. Khera, S. G. Mittal, andA. K. Sirivastava, Acta Chim. (Hungary)91, 417 (1976).

    Google Scholar 

  3. M. Mohan, H. C. Khera, S. G. Mittal, andA. K. Sirivastava, Curr. Sci.46, 211 (1977).

    Google Scholar 

  4. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Indian J. Chem.15 A, 696 (1977).

    Google Scholar 

  5. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Gazz. Chim. Italiana107, 393 (1977).

    Google Scholar 

  6. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Gazz. Chim. Italiana108, 585 (1978).

    Google Scholar 

  7. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Mh. Chem.109, 357 (1978).

    Google Scholar 

  8. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Mh. Chem.111, 63 (1980).

    Google Scholar 

  9. M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Gazz. Chim. Italiana109, 65 (1979).

    Google Scholar 

  10. F. E. Mabbs andD. J. Machin, Magnetism and Transition Metal Complexes, p. 5. London: Chapman and Hall. 1973.

    Google Scholar 

  11. G. Schwarzenbach andH. Flaschka, Complexometric Titrations. London: Methuen, 1969.

    Google Scholar 

  12. F. J. Welcher, The Analytical Uses of E.D.T.A.. New York: Van Nostrand. 1958.

    Google Scholar 

  13. A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, p. 266. London: Longmans. 1961.

    Google Scholar 

  14. B. N. Figgis andJ. Lewis, Prog. Inorg. Chem.6, 102 (1964).

    Google Scholar 

  15. R. J. Collin andL. F. Larkworthy, J. Inorg. Nucl. Chem.37, 334 (1975).

    Google Scholar 

  16. N. N. Greenwood andT. C. Gibb, Mössbauer Spectroscopy, p. 161. London: Chapman and Hall. 1971.

    Google Scholar 

  17. E. Fluck, Chemical Applications ofMössbauer Spectroscopy (V. I. Goldanskii andR. H. Herber, eds.), p. 270. New York-London: Academic Press. 1968.

    Google Scholar 

  18. A. B. P. Lever, Inorganic Electronic Spectroscopy, p. 292.Amsterdam: Elsevier. 1968.

    Google Scholar 

  19. R. A. Krause, N. B. Colthup, andD. H. Busch, J. Phys. Chem.65, 2216 (1961).

    Google Scholar 

  20. A. Fujita, A. Nakahara, andR. Tsuchido, J. Chem. Phys.23, 1541 (1955).

    Google Scholar 

  21. P. E. Figgins andD. H. Busch. J. Phys. Chem.65, 2236 (1961).

    Google Scholar 

  22. S. P. Sinha, Spectrochim. Acta20, 879 (1964).

    Google Scholar 

  23. J. H. S. Green, W. Kynaston, andH. M. Paisley, Spectrochim. Acta19, 549 (1963).

    Google Scholar 

  24. N. S. Gill andH. J. Kingdon, Austral. J. Chem.19, 2197 (1966).

    Google Scholar 

  25. G. Zerbi, J. Overend, andB. Grawford, J. Chem. Phys.38, 122 (1963).

    Google Scholar 

  26. N. S. Gill, R. H. Nuttall,D. E. Scaife, andD. W. A. Sharp, J. Inorg. Nucl. Chem.18, 79 (1961).

    Article  Google Scholar 

  27. N. F. Curtis andY. M. Curtis, Inorg. Chem.4, 807 (1965).

    Google Scholar 

  28. B. M. Gatehouse, S. E. Livingstone, andR. S. Nyholm, J. Chem. Soc.1957, 4222.

  29. A. B. P. Lever, E. Mantovani, andB. S. Ramaswamy. Canad. J. Chem.44, 1957 (1971).

    Google Scholar 

  30. J. L. Burmeister, Coordn. Chem. Rev.1, 205 (1966).3, 225 (1968).

    Google Scholar 

  31. K. Nakamoto, Y. Morimoto, andA. E. Martell, J. Amer. Chem. Soc.83, 4528 (1961).

    Google Scholar 

  32. A. B. P. Lever, J. Lewis, andR. S. Nyholm, J. Chem. Soc.1962, 5262.

  33. A. B. P. Lever andD. Ogden, J. Chem. Soc.A 1967, 2041.

  34. K. Itoh andH. J. Bernstein, Canad. J. Chem.34, 170 (1956).

    Google Scholar 

  35. W. Welter, Jr., J. Amer. Chem. Soc.77, 3941 (1955).

    Google Scholar 

  36. K. Nakamoto, J. Fujita, S. Tanaka, andM. Kobayashi, J. Amer. Chem. Soc.79, 4904 (1957).

    Google Scholar 

  37. A. Hazel andS. D. Ross, Spectrochim Acta.24A, 985 (1968).

    Google Scholar 

  38. R. J. H. Clark andC. S. Williams, Inorg. Chem.4, 350 (1965).

    Google Scholar 

  39. C. W. Frank andL. B. Rogers, Inorg. Chem.5, 615 (1966).

    Google Scholar 

  40. J. Burgress, Spectrochim. Acta24 A, 277 (1968).

    Google Scholar 

  41. R. J. H. Clark andC. S. Williams, Spectrochim. Acta23 A, 1055 (1967).

    Google Scholar 

  42. R. G. Inskeep, J. Inorg. Nucl. Chem.24, 763 (1962).

    Google Scholar 

  43. A. B. P. Dever andE. Mantovann, Inorg. Chem.10, 817 (1971).

    Google Scholar 

  44. A. B. P. Lever, andB. P. Kennedy, Canad. J. Chem.50, 3488 (1972).

    Google Scholar 

  45. K. Nakamoto, Infrared Spectral of Inorganic and Coordination Compounds, p. 215. New York: Wiley-Interscience. 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, M., Malik, W.U., Dutt, R. et al. Transition metal chemistry of oxime-containing ligands, IX. Monatshefte für Chemie 111, 1273–1285 (1980). https://doi.org/10.1007/BF00903654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00903654

Keywords

Navigation