Skip to main content
Log in

Flow of a non-Newtonian fluid past a wedge

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A pseudo-similarity solution has been obtained for the flow of an incompressible fluid of second grade past a wedge. The numerical method developed for this purpose enables computation of the flow characteristics for any value of the parametersK anda, whereK is the dimensionless normal stress modulus of the fluid, anda is related to the wedge angle. Results computed forKx wa varying from 0 to 200 show a marked decrease or increase in wall shear, depending upon the wedge angle, asx −2a /K increases from 0 to about 1; thereafter the change in wall shear stress is small. The present results match exactly with those from an earlier perturbation analysis forKx 2a≦0.01 but differ significantly asKx 2a increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajeswari, G. K., Rathna, S. L.: Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic fluids near a stagnation point. Z. Angew. Math. Phys.13, 43–57 (1962).

    Google Scholar 

  2. Beard, D. W., Walters, K.: Elastico-viscous boundary layer flows. Proc. Camb. Phil. Soc.60, 667–674 (1964).

    Google Scholar 

  3. Astin, J., Jones, R. S., Lockyer, P.: Boundary layers in non Newtonian fluids J. Mec.12, 527–539 (1973).

    Google Scholar 

  4. Srivastava, A. C.: The flow of a non-Newtonian liquid near a stagnation point Z. Angew. Math. Phys.9, 80–84 (1958).

    Google Scholar 

  5. Rajagopal, K. R., Gupta, A. S., Wineman, A. S.: On a boundary layer theory for non-Newtonian fluids. Lett. Appl. Sci. Engng.18, 875–883 (1980).

    Google Scholar 

  6. Rajagopal, K. R., Gupta, A. S., Na, T. Y.: A note on the Falkner-Skan flows of a non-Newtonian fluid. Int. J. Non-Linear Mech.18, 313–319 (1983).

    Google Scholar 

  7. Rivlin, R. S., Ericksen, J. L.: Stress deformation relation for isotropic materials. J. Rational Mech. Analysis4, 323–425 (1955).

    Google Scholar 

  8. Oldroyd, J. G.: On the formulation of rheological equations of state Proc. Roy. Soc. LondonA 200 523–541 (1950).

    Google Scholar 

  9. Garg, V. K., Rajagopal, K. R.: Stagnation point flow of a non-Newtonian fluid. Mech. Res. Comm.17, 415–421 (1990).

    Google Scholar 

  10. Beard, D. W.: Ph. D. Thesis, University of Wales, Aberystwyth, U.K.(1978).

  11. Dunn, J. E., Rajagopal, K. R.: A critical review and thermodynamic analysis of fluids of the differential type. Submitted (1990).

  12. Fosdick, R. L., Rajagopal, K. R.: Uniqueness and drag for fluids of second grade in steady motion. Int. J. Non-Linear Mech.13, 131–137 (1978).

    Google Scholar 

  13. Bellman, R. E., Kalaba, R. E.: Quasilinearization and non-linear boundary value problems, Chap. 4. New York: Elsevier 1965.

    Google Scholar 

  14. Garg, V. K.: Improved shooting techniques for linear boundary value problems Comput. Meth. Appl. Mech. Engng.22, 87–99 (1980).

    Google Scholar 

  15. Scott, M. R., Watts, H. A.: Computational solution of linear two-point boundary value problems via orthonormalization. SIAM J. Num. Analysis14 40–70 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, V.K., Rajagopal, K.R. Flow of a non-Newtonian fluid past a wedge. Acta Mechanica 88, 113–123 (1991). https://doi.org/10.1007/BF01170596

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01170596

Keywords

Navigation