Skip to main content
Log in

The fine structure of granular amoebocytes from the gonads of the sea anemoneActinia fragacea (Cnidaria: Anthozoa)

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The structure of granular amoebocytes of the intertidal sea anemoneActinia fragacea (Cnidaria: Anthozoa) has been investigated using the electron microscope. Cells from the gonads of large, intact individuals were studied in most detail, but other regions of the anemone were also examined. The amoebocytes are cells of variable appearance which are widely distributed both in the mesogloea and in the epithelial cell layers. They contain numbers of characteristic dense granules, which may enclose spherical cores of greater or lesser electron density. They also contain rough endoplasmic reticulum, Golgi apparatus and a range of inclusions, some of which may have lysosomal origins. They may contain extensive deposits of glycogen, and usually smaller quantities of lipid droplets. They may take on a variety of forms, depending partly on their location within the various types of mesogloea and epithelia. The amoebocytes appear to be motile and phagocytic, and may also be involved in the storage and transport of glycogen. They are involved with gametogenesis, both during the development of the oocytes and spermatogenic cysts and during the resorption of degenerating gametes. Their possible role in the secretion or maintenance of the mesogloea remains uncertain. No evidence of amoebocytes differentiating into other cell types was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergquist, P. R., 1978: Sponges. London: Hutchinson.

    Google Scholar 

  • Bode, H. R., David, C. N., 1978: Regulation of a multipotent stem cell, the interstitial cell of hydra. Prog. biophys. molec. Biol.33, 189–206.

    Google Scholar 

  • Boury-Esnault, N., 1977: A cell type in sponges involved in the metabolism of glycogen. The gray cells. Cell Tiss. Res.175, 523–539.

    Google Scholar 

  • Buisson, B., Franc, S., 1969: Structure et ultrastructure des cellules mésenchymateuses intramésogléenes deVeretillium cynomorium Pall. (Cnidaire, Pennatulidae). Vie Milieu Ser. A20, 279–292.

    Google Scholar 

  • Campbell, R. D., 1967: Tissue dynamics of steady state growth inHydra littoralis. 1. Patterns of cell division. Develop. Biol.15, 487–502.

    Google Scholar 

  • Carter, M. A., Thorpe, J. P., 1981: Reproductive, genetic and ecological evidence thatActinia equina var.mesembryanthemum and var.fragacea are not conspecific. J. mar. biol. Ass. U.K.61, 79–93.

    Google Scholar 

  • Chapman, D. M., 1974: Cnidarian histology. In: Coelenterate biology. Reviews and new perspectives (Muscatine, L., Lenhoff, H. M., eds.), pp. 2–92. New York: Academic Press.

    Google Scholar 

  • Chapman, G., 1953: Studies of the mesogloea ofCoelenterates. 1. Histology and chemical properties. Quart. J. microscop. Sci.94, 155–176.

    Google Scholar 

  • Dales, R. P., Dixon, L. R. J., 1981: Polychaetes. In: Invertebrate blood cells, Vol. 1 (Ratcliffe, N. A., Rowley, A. F., eds.), pp. 35–74. London: Academic Press.

    Google Scholar 

  • Doumenc, D. A., 1977: Etude dynamique de la morphogénèse des phases Actinella et Edwardsia de l'actinieCereus pedunculatus Pennant. Arch. Zool. Exp. Gén.118, 79–102.

    Google Scholar 

  • Franc, S., 1970: Les évolutions cellulaires au cours de la régénération du pédoncule deVeretillium cynomorium Pall. Vie Milieu Ser. A21, 49–93.

    Google Scholar 

  • Garrone, R., Pottu, J., 1973: Collagen biosynthesis in sponges: elaboration of spongin by spongocytes. J. submicrosc. Cytol.5, 199–218.

    Google Scholar 

  • Grimstone, A. V., Horne, R. W., Pantin, C. F. A., Robson, E. A., 1958: The fine structure of the mesenteries of the sea anemoneMetridium senile. Quart. J. microscop. Sci.99, 523–540.

    Google Scholar 

  • Hyman, L. H., 1940: The invertebrates:Protozoa throughCtenophora. The acoelomateBilateria. New York: McGraw-Hill.

    Google Scholar 

  • Johnston, M. A., Elder, H. Y., Spencer Davies, P., 1973: Cytology ofCarcinus haemocytes and their function in carbohydrate metabolism. Comp. Biochem. Physiol.46 A, 569–581.

    Google Scholar 

  • Kaneshiro, E. S., Karp, R. D., 1980: The ultrastructure of coelomocytes of the sea starDermasterias imbricata. Biol. Bull.159, 295–310.

    Google Scholar 

  • Kessel, R. G., 1968: Electron microscope studies on developing oocytes of a coelenterate medusa with special reference to vitellogenesis. J. Morphol.126, 211–248.

    Google Scholar 

  • Larkman, A. U., 1980: Ultrastructural aspects of gametogenesis inActinia equina L. In: Developmental and cellular biology of coelenterates (Tardent, P., Tardent, R., eds.), pp. 61–66. Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • —, 1981: An ultrastructural investigation of the early stages of oocyte differentiation inActinia fragacea (Cnidaria: Anthozoa). Int. J. Invertebr. Reprod.4, 147–167.

    Google Scholar 

  • —, 1983: An ultrastructural study of oocyte growth within the endoderm and entry into the mesoglea inActinia fragacea (Cnidaria: Anthozoa). J. Morphol.178, 155–177.

    Google Scholar 

  • —,Carter, M. A., 1980: The spermatozoon ofActinia equina L. var.mesembryanthemum. J. mar. biol. Ass. U.K.60, 193–204.

    Google Scholar 

  • — —, 1982: Preliminary ultrastructural and autoradiographic evidence that the trophonema of the sea anemoneActinia fragacea has a nutritive function. Int. J. Invertebr. Reprod.4, 375–379.

    Google Scholar 

  • Lewis, P. R., Knight, D. P., 1977: Staining methods for sectioned material. Amsterdam: North Holland Publishing Co.

    Google Scholar 

  • Minasian, L. L., 1980: The distribution of proliferating cells in an anthozoan polyp,Haliplanella luciae (Actinaria: Acontiaria), as indicated by3H-thymidine incorporation. In: Developmental and cellular biology of coelenterates (Tardent, P., Tardent, R., eds.), pp. 415–420. Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • Patterson, M. J., Landolt, M. L., 1979: Cellular reaction to injury in the anthozoanAnthopleura elegantissima. J. Invert. Pathol.33, 189–196.

    Google Scholar 

  • Polteva, D. G., 1970: Morphogenetic process in somatic embryogenesis ofMetridium senile. Vestn. Leningrad Univ. Ser. Biol.25, 96–105; Biol. Abstr.51, 128–150.

    Google Scholar 

  • Prockop, D. J., Kivirikko, K. I., Tuderman, L., Guzman, N., 1979: The biosynthesis of collagen and its disorders. N. Engl. J. Med.301, 77–85.

    Google Scholar 

  • Robson, E. A., 1957: The structure and hydromechanics of the musculoepithelium inMetridium. Quart. J. Microscop. Sci.98, 265–270.

    Google Scholar 

  • Singer, I. I., 1971: Tentacular and oral-disc regeneration in the sea anemone,Aiptasia diaphana. III. Autoradiographic analysis of patterns of tritiated thymidine uptake. J. Embryol. exp. Morph.26, 253–270.

    Google Scholar 

  • —, 1974: An electron microscopic and autoradiographic study of mesogloeal organization and collagen synthesis in the sea anemoneAiptasia diaphana. Cell Tiss. Res.149, 537–554.

    Google Scholar 

  • Spangenberg, D. B., Beck, C. W., 1968: Calcium sulfate dihydrate statoliths inAurelia. Trans. Amer. microsc. Soc.87, 329–335.

    Google Scholar 

  • Tardent, P., Schmid, 1973: Ultrastructure of mechanoreceptors of the polypCoryne pintneri (Hydrozoa, Athecata). Exp. Cell Res.72, 265–275.

    Google Scholar 

  • —,Tardent, R., 1980: Developmental and cellular biology of coelenterates. Amsterdam: Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • Tiffon, T., Hugon, J. S., 1977: Localisation ultrastructurale de la phosphatase acide et de la phosphatase alcaline dans les cloisons septales stériles de l'anthozoairePachycerianthus fimbriatus. Histochemistry54, 289–297.

    Google Scholar 

  • Van der Vyver, G., 1981: Organisms without special circulatory systems. In: Invertebrate blood cells, Vol. 1 (Ratcliffe, N. A., Rowley, A. F., eds.), pp. 19–32. London: Academic Press.

    Google Scholar 

  • Van Praet, M., 1974: Régénération de la région péri-orale d'Actinia equina L. Thèse 3e cycle, Université Paris VI.

  • —, 1976: Les activités phosphatasiques acides chezActinia equina L. etCereus pedunculaius P. Bull. Soc. Zool. France101, 367–376.

    Google Scholar 

  • —, 1978: Etude histochimique et ultrastructurale des zones digestives d'Actinia equina L. (Cnidaria, Actinaria). Cah. Biol. Mar.19, 415–432.

    Google Scholar 

  • Van Praet, M., Doumenc, D., 1975: Morphologie et morphogénèse expérimentale du tentacule chezActinia equina L. J. Microsc. Biol. Cell23, 29–38.

    Google Scholar 

  • Watson, G. M., Mariscal, R. N., 1983: Comparative ultrastructure of catch tentacles and feeding tentacles in the sea anemoneHaliplanella. Tiss. Cell15, 939–953.

    Google Scholar 

  • Westfall, J. A., 1966: The differentiation of nematocysts and associated structures in theCnidaria. Z. Zellforsch.75, 381–403.

    Google Scholar 

  • Young, J. A. C., 1974: The nature of tissue regeneration after wounding in the sea anemoneCalliactis parasitica (Couch). J. mar. biol. Ass. U.K.54, 599–617.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkman, A.U. The fine structure of granular amoebocytes from the gonads of the sea anemoneActinia fragacea (Cnidaria: Anthozoa) . Protoplasma 122, 203–221 (1984). https://doi.org/10.1007/BF01281698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01281698

Keywords

Navigation