Skip to main content
Log in

Effects of heavy metals on growth and ultrastructure ofChara vulgaris

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The toxicity of some heavy metals to the common macrophytic freshwater algaChara vulgaris was studied under laboratory conditions. For experiments, apical tips of algae containing two internodes were cultivated for fourteen days in the presence of various concentrations of cadmium, mercury or lead (as triethyl lead or lead nitrate). Fifty percent growth inhibition occurred with concentrations of 8.5×10−8 M (9.5 ppb) cadmium, 7.5×10−7M (150ppb) mercury, 1.6×10−6 M (330ppb) organic lead or 4× 10−5 M (8000 ppb) inorganic lead. Sublethal concentrations of these metals caused alterations in the fine structure of internodal cells which turned out to be at least partly metal-specific or in the case of lead, the effects depended on whether the lead was ionic or organically bound. Cadmium and inorganic lead induced disorders of cell wall microfibrils which resulted in local wall protuberances. Mercury affected the chloroplasts which mostly showed considerably increased grana stacks. In addition, mercury caused a dilation of the endoplasmic reticulum and of the mitochondrial tubuli. Organic lead damaged the membrane system of chloroplasts; sheet- or tubule-like thylakoids were disarranged and showed whorl-like structures. At higher concentrations of organic lead, tubular invaginations of the plasmalemma (“charasomes”) disappeared. The fine structure of nuclei was not altered by any of the metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adshead-Simonsen PC, Murray GE, Kushner DJ (1981) Morphological changes in the diatom,Tabellaria flocculosa, induced by very low concentrations of cadmium. Bull Environ Contam Toxicol 26: 745–748

    Google Scholar 

  • Bariaud A, Bonaly J, Delcourt A, Mestre JC (1978) Divers aspects de l'action toxique du cadmium sur les cellulesd'Euglena gracilis. Actual Biochim Mar 2: 135–148

    Google Scholar 

  • Bartlett L, Rabe FW, Funk WH (1974) Effects of copper, zinc and cadmium onSelanastrum capricornutum. Water Research 8: 179–185

    Google Scholar 

  • Barton R (1965) Electron microscope studies on surface activity in cells ofChara vulgar is. Planta 66: 95–105

    Google Scholar 

  • — (1968) Autoradiographic studies on wall formation inChara. Planta 82: 302–306

    Google Scholar 

  • Bradley MO (1973) Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J Cell Sci 12: 327–343

    Google Scholar 

  • Brown BT, Rattigan BM (1979) Toxicity of soluble copper and other metal ions toElodea canadensis. Environ Pollut 20: 303–314

    Google Scholar 

  • Bryan GW (1976) Some aspects of heavy metal tolerance in aquatic organisms. In:Lockwood APM (ed) Effects of pollutants on aquatic organisms. University Press, Cambridge, pp 7–34

    Google Scholar 

  • Bubel A (1976) Histological and electron microscopical observations on the effects of different salinities and heavy metal ions, on the gills ofJaera nordmanni (Rathke) (Crustacea, Isopodd). Cell Tissue Res 167: 65–95

    Google Scholar 

  • Cain JR, Allen RK (1980) Use of a cell wall-less mutant strain to assess the role of the cell wall in cadmium and mercury tolerance byChlamydomonas reinhardtii. Bull Environm Contam Toxicol 25: 797–801

    Google Scholar 

  • Chambers TC, Mercer FV (1964) Studies on the comparative physiology ofChara australis. II. The fine structure of the protoplast. Aust J Biol Sci 17: 372–387

    Google Scholar 

  • Crawley JCW (1965) A cytoplasmic organelle associated with the cell walls ofChara andNitella. Nature 205: 200–201

    Google Scholar 

  • De Filippis LF, Pallaghy CK (1976) The effect of sub-lethal concentrations of mercury and zinc onChlorella. II. Photosynthesis and pigment composition. Z Pflanzenphysiol 78: 314–322

    Google Scholar 

  • —,Hampp R, Ziegler H(1981) The effects of sublethal concentrations of zinc, cadmium and mercury onEuglena. II. Respiration, photosynthesis and photochemical activities. Arch Microbiol 128: 407–411

    Google Scholar 

  • Fasulo MP, Bassi M, Donini A (1982) Cytotoxic effects of hexavalent chromium inEuglena gracilis. I. First observations. Protoplasma 110: 39–47

    Google Scholar 

  • Forsberg C (1965) Nutritional studies ofChara in axenic cultures. Physiol Plant 18: 275–290

    Google Scholar 

  • Franceschi VR, Lucas WJ (1980) Structure and possible function(s) of charasomes; complex plasmalemma-cell wall elaborations present in some characean species. Protoplasma 104: 253–271

    Google Scholar 

  • — — (1982) The relationship of the charasome to chloride uptake inChara corallina: physiological and histochemical investigations. Planta 154: 525–537

    Google Scholar 

  • Fujita M, Iwasaki K, Takabatake E (1977) Intracellular distribution of mercury in freshwater diatom,Synedra cells. Environ Res 14: 1–13

    Google Scholar 

  • Geisweid HJ, Urbach W (1983) Sorption of cadmium by the green microalgaeChlorella vulgaris, Ankistrodesmus braunii andEremosphaera viridis. Z Pflanzenphysiol 109: 127–141

    Google Scholar 

  • Gerhards U, Weller H (1977) Die Aufnahme von Quecksilber, Cadmium und Nickel durchChlorella pyrenoidosa. Z Pflanzenphysiol 82: 292–300

    Google Scholar 

  • Green BP, Chapman GB (1955) On the development and structure of the cell wall inNitella. Am J Bot 42: 685–693

    Google Scholar 

  • Haritonidis S, JÄger H-J, Schwantes H-O (1983) Accumulation of cadmium, zinc, copper and lead by marine Macrophyceae under culture conditions. Angew Bot 57: 311–330

    Google Scholar 

  • Kayser H, Sperling K-R (1980) Cadmium effects and accumulation in cultures ofProrocentrum micans (Dinophyta). HelgolÄnder Meeresunters 33: 89–102

    Google Scholar 

  • Klass E, Rowe DW, Massaro EJ (1974) The effect of cadmium on population growth of the green algaScenedesmus quadracauda. Bull Environm Contam Toxicol 12: 442–445

    Google Scholar 

  • Krause W (1981) Characeen als Bioindikatoren für den GewÄsserzustand. Limnologica 13: 399–418

    Google Scholar 

  • Lane SD, Martin ES (1980) Further observations on the distribution of lead in juvenile roots ofRaphanus sativus. Z Pflanzenphysiol 97: 145–152

    Google Scholar 

  • Lignell A, Roomans GM, Pedersen M (1982) Localization of absorbed cadmium inFucus vesiculosus L. by X-ray microanalysis. Z Pflanzenphysiol 105: 103–109

    Google Scholar 

  • Malone C, Koeppe DE, Miller RJ (1974) Localization of lead accumulated by corn plants. Plant Physiol 53: 388–394

    Google Scholar 

  • Mang S, Tromballa HW (1978) Aufnahme von Cadmium durchChlorella fusca. Z Pflanzenphysiol 90: 293–302

    Google Scholar 

  • Markham JW, Kremer BP, Sperling KR (1980 a) Cadmium effects on growth and physiology ofUlva lactuca. HelgolÄnder Meeresunters. 33: 103–110

    Google Scholar 

  • — — — (1980 b) Effects of cadmium onLaminaria saccharina in culture. Mar Ecol Prog Ser 3: 31–39

    Google Scholar 

  • Melzer A (1985) Makrophytische Wasserpflanzen als Bioindikatoren. Naturwissenschaften 72: 456–460

    Google Scholar 

  • Morris AW, Bale AJ (1975) The accumulation of cadmium, copper, manganese and zinc byFucus vesiculosus in the Bristol Channel. Extuar Coast Mar Sci 3: 153–163

    Google Scholar 

  • Nagai R, Rebhun LI (1966) Cytoplasmic microfilaments in streamingNitella cells. J Ultrastruct Res 14: 571–589

    Google Scholar 

  • Nasu Y, Kugimoto M, Tanaka O, Takimoto A (1984)Lemna as an indicator of water pollution and the absorption of heavy metals byLemna. In:Pascoe C, Edwards RW (eds) Freshwater biological monitoring. Pergamon Press, Oxford New York, pp 113–120

    Google Scholar 

  • Niklowitz WJ (1974) Ultrastructural effect of acute tetraethyllead poisoning on nerve cells of the rabbit brain. Environ Res 8: 17–36

    Google Scholar 

  • Palevitz BA, Hepler PK (1975) Identification of actinin situ at the ectoplasm—endoplasm interface ofNitella. J Cell Biol 65: 29–38

    Google Scholar 

  • Pickett-Heaps JD (1967) Ultrastructure and differentiation inChara sp. I. Vegetative cells. Aust J biol Sci 20: 539–551

    Google Scholar 

  • Price GD, Badger MR, Bassett ME, Whitecross MI (1985) Involvement of plasmalemmasomes and carbonic anhydrase in photosynthetic utilization of bicarbonate inChara corallina. Aust J Plant Physiol 12: 241–256

    Google Scholar 

  • Probine MC, Preston RD (1961) Cell growth and the structure and mechanical properties of the wall in internodal cells ofNitella opaca. I. Wall structure and growth. J Exp Bot 12: 261–282

    Google Scholar 

  • Rachlin JW, Farran M (1974) Growth response of the green algaeChlorella vulgaris to selective concentrations of zinc. Water Research 8: 575–577

    Google Scholar 

  • Ravera O (1984) Cadmium in freshwater ecosystems. Experientia 40: 2–14

    Google Scholar 

  • Röderer G (1979) Hemmung der Cytokinese und Bildung von Riesenzellen beiPoterioochromonas malhamensis durch organische Bleiverbindungen und andere Agenzien. Protoplasma 99: 39–51

    Google Scholar 

  • — (1980) On the toxic effects of tetraethyl lead and its derivatives on the chrysophytePoterioochromonas malhamensis. I. Tetraethyl Lead. Environ Res 23: 371–384

    Google Scholar 

  • — (1984) On the toxic effects of tetraethyl lead and its derivatives on the chrysophytePoterioochromonas malhamensis—V. Electron microscopical studies. Environ Exper Bot 24: 17–30

    Google Scholar 

  • Saboski EM (1977) Effects of mercury and tin on frustular ultrastructure of the marine diatom,Nitzschia liebethrutti. Water Air, Soil Poll 8: 461–466

    Google Scholar 

  • Sandmann G, Böger P, 1980: Copper deficiency and toxicity inScenedesmus. Z Pflanzenphysiol 98: 53–59

    Google Scholar 

  • Shieh YJ, Barber J (1973) Uptake of mercury byChlorella and its effect on potassium regulation. Planta 109: 49–60

    Google Scholar 

  • Sicko-Goad L (1982) A morphometric analysis of algal response to low dose, short-term heavy metal exposure. Protoplasma 110: 75–86

    Google Scholar 

  • Silverberg BA (1976) Cadmium-induced ultrastructural changes in mitochondria of freshwater green algae. Phycologia 15: 155–159

    Google Scholar 

  • —,Wong PTS, Chau YK (1977) Effect of tetramethyl lead on freshwater green algae. Arch Envir Contam Toxic 5: 305–313

    Google Scholar 

  • Skaar H, Ophus E, Gullvag BM (1973) Lead accumulation within nuclei of moss leaf cells. Nature 241: 215–216

    Google Scholar 

  • Smith MA (1983) The effect of heavy metals on the cytoplasmic fine structure ofSkeletonema costatum (Bacillariophyta). Protoplasma 116: 14–23

    Google Scholar 

  • Soyer M-O, Prevot P (1981) Ultrastructural damage by cadmium in a marine dinoflagellate,Prorocentrum micans. J Protozool 28: 308–313

    Google Scholar 

  • Stanley RA (1974) Toxicity of heavy metals and salts to Eurasian watermilfoil (Myriophyllum spicatum L.). Arch Envir Contam Toxic 2: 331–341

    Google Scholar 

  • Trump BF, Jones RT, Sahaphong S (1975) Cellular effects of mercury on fish kidney tubules. In:Ribelan WE, Migari G (eds) The pathology of fishes. University of Wisconsin Press, Madison, pp 585–611

    Google Scholar 

  • Zimmermann H-P, Doenges KH, Röderer G (1985) Interaction of triethyl lead chloride with microtubulesin vitro and in mammalian cells. Exp Cell Res 156: 140–152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heumann, H.G. Effects of heavy metals on growth and ultrastructure ofChara vulgaris . Protoplasma 136, 37–48 (1987). https://doi.org/10.1007/BF01276316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276316

Keywords

Navigation