Skip to main content
Log in

Mineral congregations, “spherites” in the midgut gland ofCoelotes terrestris (Araneae): Structure, composition and function

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Spherites in the digestive and secretory cells of the midgut gland of the agelenid spiderCoelotes terrestris were studied by electron microscopy and histochemical methods. Spherites measured 1–6 μm in diameter and were characterized by alternating layers of electron dense and electron lucent material. The main-components of spherites were calcium phosphates and calcium carbonates. Guanine and barium, as well as aminopeptidase and alkaline phosphatase were also present. The matrix consisted of proteins and carbohydrates. Numerous spherites were found together with excretory products within the excretory vacuoles of the digestive cells.

Spiders fed with food containing lead, showed deposition of the metall in the spherites. It is then proposed that spherites, aside from their role in storing calcium and other ions, may function in detoxification of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abolins-Krogis A (1970) Electron microscope studies of intracellular origin and formation of calcifying granules and calcium spherites in the hepatopancreas of the snail,Helix pomatia. L. Z Zellforsch mikrosk Anat 108: 501–515

    PubMed  Google Scholar 

  • Alberti G, Storch V (1983) Zur Ultrastruktur der Mitteldarmdrüsen von Spinnentieren (Scorpiones, Araneae, Acari) unter verschiedenen Ernährungsbedingungen. Zool Anz Jena 211: 145–160

    Google Scholar 

  • André J, Fauré-Fremiet E (1967) Formation et structure des concrétions calcaires chezPorodon morgani Kahl. J Microscopie 6: 391–398

    Google Scholar 

  • Becker A, Peters W (1985) Fine structure of the midgut gland ofPhalangium opilio (Chelicerata, Phalangida). Zoomorphology 105: 317–325

    Google Scholar 

  • Becker GL, Chen CH, Greenawalt JW, Lehninger AL (1974) Calcium phosphate granules in the hepatopancreas of the blue crabCallinectes sapidus. J Cell Biol 61: 316–326

    PubMed  Google Scholar 

  • Brown BE (1982) The form and function of metal-containing “granules” in invertebrate tissues. Biol Rev 57: 621–667

    Google Scholar 

  • Burton R (1972) The storage of calcium and magnesium phosphates and of calcite in the digestive glands of thePulmonata (Gastropoda). Comp Biochem Physiol 43 a: 655–663

    Google Scholar 

  • Carasso N, Favard P (1966) Mise en evidence du calcium dans les myonemes pedonuclaires de cilies peritriches. J Microscopie 5: 759–770

    Google Scholar 

  • Chayen L, Bitensky R, Butcher G (1975) Histochemie, Grundlagen und Methoden. Verlag Chemie, Weinheim

    Google Scholar 

  • Erhardt P (1965) Magnesium und Calcium enthaltende Einschluß- körper in den Mitteldarmzellen von Aphiden. Experientia 21/6: 337–338

    Google Scholar 

  • Fausser V (1909) Über Guaninablagerungen bei Spinnen. Zool Anz 35: 65–75

    Google Scholar 

  • Feigl F (1924) Qualitative Microanalysis. Mikrochemie 2: 186–188

    Google Scholar 

  • Gouranton J (1968) Composition, structure et mode de formation des concretions minerales dans l'intestin moyen des homoptères cercopides. J Cell Biol 37: 316–328

    PubMed  Google Scholar 

  • Goyffon M, Martoja R (1983) Cytophysiological aspects of digestion and storage in the liver of a scorpion,Androctonus australis (Arachnida). Cell Tissue Res 228: 661–675

    PubMed  Google Scholar 

  • Guary JC, Negrel R (1981) Calcium phosphate granules: a trap for transuranics and iron in crab hepatopancreas. Comp Biochem Physiol 68 A: 423–427

    Google Scholar 

  • Hausmann K (1982) Kristalle in Wimpertierchen. Mikrokosmos 2: 33–39

    Google Scholar 

  • Hubert M (1978) Données histophysiologiques complémentaires sur les bioaccumulations minérales et puriques chezCylindroiulus londinensis (Leach 1814) (Diplopode, Iuloidea). Arch Zool Exp Gen 119: 669–683

    Google Scholar 

  • Hugon JS, Borgers M(1966) A direct lead method for the electron microscopic visualisation of alkaline phosphatase activity. J Histochem Cytochem 14: 429–431

    PubMed  Google Scholar 

  • Humbert W (1974) Localisation, structure et genèse des concrétions minérales dans le mésentéron des collembolesTomoceridae (Insecta, Collembola). Z Morph Tiere 78: 93–109

    Google Scholar 

  • — (1977) The mineral concretions in the midgut ofTomocerus minor (Collembola): microprobe analysis and physioecological significance. Rev Ecol Biol Sol 14 (1): 71–80

    Google Scholar 

  • Janssen HH (1985) Some histophysiological findings on the midgut gland of the common garden snail,Arion rufus (L.) [Syn.A. ater (L.),A. empiricorum Ferrusac],Gastropoda: Stylommatophora. Zool Anz 215: 33–51

    Google Scholar 

  • Kanungo MS, Bohidar SC, Patnaik BK (1962) Excretion in the scorpionPalamnaeus bengalensis C. Koch. Physiol Zool 35: 201–203

    Google Scholar 

  • McGhee-Russel SM (1958) Histochemical methods for calcium. J Histochem Cytochem 6: 22–42

    PubMed  Google Scholar 

  • Miller F, Palade G (1964) Lytic activities in renal protein absorbtion droplets. J Cell Biol 23: 519–552

    PubMed  Google Scholar 

  • Pearse AGE (1961) Histochemistry: 2nd edition. J. + A. Churchill Ltd, London

    Google Scholar 

  • Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35: 313–323

    PubMed  Google Scholar 

  • Romeis B (1948) Mikroskopische Technik. R. Oldenbourg, München

    Google Scholar 

  • Seligman AM, Wasserkrug HL, Plapinger RE, Seito T, Hanker JS (1970) Membraneous ultrastructural demonstration of aminopeptidase and γ-glutamyltranspeptidase activities with a new diazonium salt, that yields a lipophobic, osmiophilic azo dye. J Histochem Cytochem 18: 542–551

    PubMed  Google Scholar 

  • Simkiss K (1981) Calcium, pyrophosphate and cellular pollution. Trends in Biochemical Sciences 6: 3–5

    Google Scholar 

  • Sminia T, de With WD, Bos JL, van Nieumwegen ME, Witter MP, Wondergem J (1985) Structure and function of the calcium cells of the freshwater pulmonate snail,Lymnea stagnalis. Netherl J Zool 27: 195–208

    Google Scholar 

  • Storch V, Welsch U (1977) Elektronenmikroskopische und enzymhistochemische Untersuchungen der Mitteldarmdrüse der landlebenden DekapodenCoenobita rugosa undOcypode ceratophthalma. Zool Jb Anat 97: 25–39

    Google Scholar 

  • Thiery JP (1967) Mise en evidence des polysaccharides sur coupes fines en microscopie electronique. J Microscopie 6: 987–1018

    Google Scholar 

  • Timm F (1958) Zur Histochemie der Schwermetalle. Das Silbersulfidverfahren. Dt Z gerichtl Med 46: 706–711

    Google Scholar 

  • Triebskorn R (1986)Pomatias elegans: Zur Ernährungsbiologie einer prosobranchen Landschnecke. Diplomarbeit, Heidelberg

  • Turbeck B (1974) A study of the concentrically laminated concretions, “Spherites”, in the regenerative cells of the midgut of lepidopterous larvae. Tissue and Cell 6: 627–640

    Google Scholar 

  • Van Herb F (1970) Study of the influence of sinus gland extirpation on the alkaline phosphatase in the hepatopancreas of the crayfishAstacus leptodactylus. Comp Biochem Physiol 34: 439–445

    Google Scholar 

  • Wieser W (1979) Schwermetalle im Blickpunkt ökologischer Forschung. Biol in unserer Zeit 3: 80–89

    Google Scholar 

  • Wright KA, Newell JM (1964) Some observations on the finestructure of the midgut of the miteAnystis spec. Ann Entomol Soc Am 57: 684–693

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, M., Alberti, G. Mineral congregations, “spherites” in the midgut gland ofCoelotes terrestris (Araneae): Structure, composition and function. Protoplasma 143, 43–50 (1988). https://doi.org/10.1007/BF01282958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282958

Keywords

Navigation