Skip to main content
Log in

57Fe Mössbauer study of pumpellyiteokhotskite-julgoldite series minerals

Eine57Fe Mössbauer-Studie von Mineralen der Pumpellyit-Okhotskit-Julgoldit-Serie

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Fe and Mn distribution in the pumpellyite group minerals (W 8 X 4 Y 8 Z 12056-n (OH) n ) has been studied by using57Fe Mössbauer spectroscopy. The studied Fe-pumpellyites, belonging to the pumpellyite-julgoldite series, were collected from two localities; metabasites in the Tokoro belt, Hokkaido, and gabbroic sills in the Shimane Peninsula, Japan. Okhotskite, an Mn3+-dominant pumpellyite group mineral, was separated from the ores of metamorphosed manganiferous iron ore deposits in the Tokoro belt.57Fe Mössbauer spectrum of Tokoro Fe-pumpellyite is composed of two Fe2+- and two Fe3+-doublets. On the basis of the single crystal structure refinements of Al-pumpellyites published so far, doublets were assigned to Fe 2+ W (IS= 1.01 andQS = 2.73 mm/s), Fe 2+ X (IS = 0.97 andQS = 3.18 mm/s), Fe 3+ X (IS = 0.29 andQS =1.37 mm/s) and Fe 3+ Y (IS = 0.36 andQS = 2.09 mm/s), whereIS is isomer shift relative to a metallic iron absorber andQS is quadrupole splitting. The Mössbauer spectrum of the Mitsu Fepumpellyite is composed of three doublets assigned to Fe 2+ X (IS= 1.14 andQS = 3.20 mm/s), Fe 3+ X (IS = 0.36 andQS =1.13 mm/s) and Fe 3+ Y (IS = 0.37 andQS= 1.93 mm/s). These assignments show strong preference of Fe3+ in the X-site. The Mössbauer spectrum of the okhotskite is composed of two doublets by Fe 3+ X (IS= 0.37 andQS = 1.13 mm/s) and Fe 3+ Y (IS = 0.42 andQS = 2.18 mm/s). The area ratio shows that Fe 3+ X :Fe 3+ Y ratio is 94:6. On the basis of chemical and Mössbauer analyses, Mn 3+ X :Mn 3+ Y ratio is given as 19:81, indicating stronger Y-site preference of Mn3+ than Fe3+, what is consistent with Jahn-Teller theory. Al, Mn3+ and Fe3+ prefer the Y-site in this order.

Zusammenfassung

Die Fe- und Mn-Verteilung in Mineralen der Pumpellyit-Gruppe (W 8 X 4 Y 8 Z 12O56-n (OH)n) wurde mittels Mössbauer-Spektroskopie studiert. Die untersuchten Fe-Pumpellyite der Pumpellyit-Julgoldit-Serie stammen von zwei verschiedenen japanischen Lokalitäten: von Metabasiten des Tokoro-Gürtels, Hokkaido, und von Gabbro-Sills der Shimane Halbinsel. Okhotskit, ein Mn3+-dominiertes Mineral der Pumpellyit-Gruppe, wurde aus Erzen einer Mn-führenden Eisenerzlagerstätte des Tokoro-Gürtels separiert. Das57Fe Mössbauer-Spektrum der Tokoro Fe-Pumpellyite zeigt zwei Fe2+- und zwei Fe3+-Doubletten. Auf Grund bisher publizierter verfeinerter Einkristall-Strukturuntersuchungen von Al-Pumpellyiten werden diese Doubletten folgendermaßen zugeordnet: Fe 2+ W (IS = 1.01 undQS = 2.73 mm/s), Fe 2+ X (IS = 0.97 undQS = 3.18 mm/s), Fe 3+ X (IS = 0.29 undQS =1.37 mm/s) und Fe 3+ Y (IS = 0.36 undQS = 2.09 mm/s).IS bezeichnet dabei die Isomer-Shift relativ zu einem metallischen Eisenabsorbenten,QS das Quadrupole-Splitting. Diese Zuordnungen belegen den bevorzugten Einbau von Fe3+ in die X-Position. Das Mössbauer-Spektrum von Okhotskit zeigt zwei Doubletten bei Fe 3+ X (IS = 0.37 undQS = 1.13 mm/s) und Fe 3+ Y (IS = 0.42 undQS = 2.18 mm/s). Das Flächenverhältnis zeigt, daß das Verhältnis Fe 3+ X :Fe 3+ Y 94:6 ist. Auf Grund der chemischen und der Mössbauer-Analysen wird das Mn 3+ X :Mn 3+ Y Verhältnis mit 19:81 angegeben. Mn3+ zeigt somit eine stärkere Präferenz für die Y-Position als Fe3+, ein Resultat, das mit der Jahn-Teller-Theorie konsistent ist. Der bevorzugte Einbau in die Y-Position ist, in dieser Reihenfolge, Al>Mn3+>Fe3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasaka M, Sakakibara M, Togari K (1988) Piemontite from the manganiferous hematite ore deposits in the Tokoro Belt, Hokkaido, Japan. Mineral Petrol 38: 105–116

    Google Scholar 

  • Akasaka M, Omori Y, Sakakibara M, Shinno I (1994) M6ssbauer parameter of Fe3+ in the X- and Y-sites in pumpellyite-julgoldite series minerals. Annual Meeting of Mineral Soc Japan, p 188 (in Japanese)

  • Allmann R, Donnay G (1971) Structural relations between pumpellyite and ardennite. Acta Cryst B27: 1871–1875

    Google Scholar 

  • Artioli G, Geiger CA (1994) The crystal chemistry of pumpellyite: an X-ray Rietveld refinement and57Fe Mössbauer study. Phys Chem Minerals 20: 443–453

    Google Scholar 

  • Artioli G, Sacchi M, Balerna A, Burattini E, Simeoni S (1991) XANES studies of Fe in pumpellyite-group minerals. N Jb Mineral Monatsh: 413–421

  • Artioli G, Bellotto M, Pavese A, Collins SP, Lucchetti G (1993) Resonant powder X-ray diffraction: study of Mn oxidation-state and distribution in pumpellyite minerals. First Congress of the Italian Synchrotron Radiation Society (Rome). CNR Abstract: PS-50

  • Artioli G, Quartieri S, Deriu A (1995) Spectroscopic data on coexisting prehnitepumpellyite and epidote-pumpellyite. Can Mineral 33: 67–75

    Google Scholar 

  • Artioli G, Pavese A, Bellotto M, Collins SP, Lucchetti G (1996) Mn crystal chemistry in pumpellyite: a resonant-scattering powder diffraction Rietveld study using synchrotron radiation. Am Mineral 81: 603–610

    Google Scholar 

  • Bancroft GM, Maddock AG, Burns RG (1967) Applications of the Massbauer effect to silicate mineralogy. 1. Iron silicates of known crystal structure. Geochim Cosmochim Acta 31: 2219–2240

    Google Scholar 

  • Burns RG (1970) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge, 224pp

    Google Scholar 

  • Coombs DS (1953) The pumpellyite mineral series. Mineral Mag 30: 113–135

    Google Scholar 

  • Dollase WA (1973) Mössbauer spectra and iron distribution in the epidote-group minerals. Z Kristallogr 138: 41–64

    Google Scholar 

  • Galli E, Alberti A (1969) On the crystal structure of pumpellyite. Acta Crystal B25: 2276–2281

    Google Scholar 

  • Ghose S, Kersten M, Langer K, Rossi G, Ungaretti L (1986) Crystal field spectra and Jahn Teller effect of Mn 3+ in clinopyroxene and clinoamphiboles from India. Phys Chem Minerals 13: 291–305

    Google Scholar 

  • Hawthorne FC (1988) Massbauer spectroscopy. In:Hawthorne FC (eds) Reviews in mineralogy, vol 18. Spectroscopic methods in mineralogy and geology. Mineralogical Society of America, Washington, pp 255–340

    Google Scholar 

  • Ivanov OK, Arkhangel'skaya VA, Miroshnikova LO, Shilova TA (1981) Shuiskite, the chromium analogue of pumpellyite, from the Bisersk deposit, Urals. Zapiski Vses Mineral Obsh 110: 508–512 (in Russian)

    Google Scholar 

  • Kano K, Satoh H, Bunno M (1986) Iron-rich pumpellyite and prehnite from the Miocene gabbroic sills of the Shimane Peninsula, Southwest Japan. J Jpn Assoc Min Petr Econ Geol 81: 51–58

    Google Scholar 

  • Kato A, Matsubara S, Yamamoto R (1981) Pumpellyite-(Mn 2+) from the Ochiai Mine, Yamanashi Prefecture, Japan. Bull Minèral 104: 396–399

    Google Scholar 

  • Kimura Y, Akasaka M, Sakakibara M, Shinno I, Togari K (1995) Distribution of Fe3+ and Mn3+ in okhotskite. Geol Report Shimane Univ 14: 43–54 (in Japanese with English abstract)

    Google Scholar 

  • Moor PB (1971) Julgoldite, the Fe e+-Fe3+ dominant pumpellyite. Lithos 4: 93–99

    Google Scholar 

  • Palache C, Vassar HE (1925) Some minerals of the Keweenawan copper deposits: pumpellyite, a new mineral; sericite; saponite. Am Mineral 10: 412–418

    Google Scholar 

  • Passaglia E, Gottardi G (1973) Crystal chemistry and nomenclature of pumpellyites and julgoldites. Can Mineral 12: 219–223

    Google Scholar 

  • Pan Y, Fleet ME (1992) Vanadium-rich minerals of the pumpellyite group from the Hemlo gold deposit, Ontario. Can Mineral 30: 153–162

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation, a quantitative measure of distortion in coordination polyhedra. Science 172: 567–570

    Google Scholar 

  • Sakakibara M (1986) A newly discovered high-pressure terrane in eastern Hokkaido, Japan. J Metam Geol 4: 401–408

    Google Scholar 

  • Sakakibara M (1991) Metamorphic petrology of the Northern Tokoro metabasites, eastern Hokkaido, Japan. J Petrol 32: 333–364

    Google Scholar 

  • Sakakibara M, Akasaka M, Togari K (1986) Fe-pumpellyite from the Tokoro metamorphic belt. 1986 Joint Annual Meeting, p 135 (in Japanese)

  • Shinno I, Maeda Y (1981) A FORTRAN IV computer program LSF for analysis of Mössbauer spectra. The Reports on Earth Science College of General Education Kyushu Univ 22, pp 13–26 (in Japanese)

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystal A32: 751–767

    Google Scholar 

  • Togari K, Akasaka M (1987) Okhotskite, a new mineral, an Mn3+-dominant member of the pumpellyite group, from the Kokuriki mine, Hokkaido, Japan. Mineral Mag 51: 611–614

    Google Scholar 

  • Togari K, Akasaka M, Sakakibara M, Watanabe T (1988) Mineralogy of maganiferous iron ore deposits and chert from the Tokoro Belt, Hokkaido. Mining Geol [Spec Issue] 12: 115–126

    Google Scholar 

  • van der Woude F (1996) Mbssbauer effect in a-Fe2O3. Phys Stat Sol 17: 417–432

    Google Scholar 

  • Yoshiasa A, Matsumoto T (1985) Crystal structure refinement and crystal chemistry of pumpellyite. Am Mineral 70: 1011–1019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akasaka, M., Kimura, Y., Omori, Y. et al. 57Fe Mössbauer study of pumpellyiteokhotskite-julgoldite series minerals. Mineralogy and Petrology 61, 181–198 (1997). https://doi.org/10.1007/BF01172483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172483

Keywords

Navigation