Skip to main content
Log in

Experimental determination of the upper stability of scorzalite, FeAl2[OH/PO4]2, and the occurrence of minerals with a composition intermediate between scorzalite and lazulite(ss) up to the conditions of the amphibolite facies

Experimentelle Bestimmung der thermischen Stabilität von Skorzalith, FeAl2[OH/ PO4]2, und das Auftreten von Lazulith-Skorzalith Mischkristallen unter den Bedingungen der Amphibolithfazies

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The stability field of scorzalite (FeAl2[OH/PO4]2) was investigated in the P-T range from 487 to 684 °C and 0.1 to 0.3 GPa. in hydrothermal experiments. The oxygen fugacity was fixed by the Ni/NiO buffer. Scorzalite shows a decomposition according to the reaction: FeAl2[OH/PO4]2) → FeAlPO5 + AlPO4 (berlinite) + H2O. The mean standard enthalpy and standard entropy of reaction were determined as ΔH 0R = 94(13) kJ, ASR = 180(16) JK−1. A57Fe-Mößbauer spectroscopic examination showed that about 4 atomic % of the total Fe in scorzalite is trivalent.

Zusammenfassung

Das Stabilitätsfeld von Skorzalith (FeAl2[OH/PO4]2) wurde im P-T-Bereich zwischen 487 und 684 °C und zwischen 0.1 und 0.3 GPa in Hydrothermalexperimenten unter der Sauerstoffugazität des Ni/NiO-Puffers untersucht. Skorzalith zerfällt unter diesen Bedingungen gemäß der Reaktion: FeAl2[OH/PO4]2) → FeAlPO5 + AlPO4 (Berlinit) + H2O. Die Reaktionsenthalpie und -entropie für Standardbedingungen wurden zu ΔH 0R = 94(13) kJ und ASR = 180(16) JK−1 bestimmt.57 Fe-Mößbaueruntersuchungen ergaben, daß ungefähr 4% des Gesamteisens in Skorzalith dreiwertig vorliegen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthauer G, Lottermoser W (1992) MOESALZ: ein Software-Paket zur Auswertung von Mößbauerspektren. Institut für Mineralogie und Lagerstättenkunde, Universität Salzburg, österreich

    Google Scholar 

  • Amthauer G, Rossman GR (1984) Mixed valence of iron in minerals with cation clusters. Phys Chem Minerals 11: 37–51

    Google Scholar 

  • Bajanik S (1979) Lazulit od Jakloviek v Spissko-Gemerskom Rudohori. Mineralogica Slovaca 11: 473–476

    Google Scholar 

  • Brunet F, Vielzeuf D (1996) The farringtonite I Mg3(PO4)2-II transformation: a new curve for pressure calibration in piston-cylinder apparatus. Eur J Mineral 8: 349–354

    Google Scholar 

  • Cassedanne JP (1990) Un nouveau materiaux gemme: le quartzite à lazulite (BahiaBrésil). Rev Gemmol 105: 16–18

    Google Scholar 

  • Cemič L, Schmid-Beurmann P (1995) Lazulite stability relations in the system Al2O3-AlPO4-Mg3(PO4)2-H2O. Eur J Mineral 7 (4): 921–929

    Google Scholar 

  • Cornelius HP (1936) Ein Vorkommen von Lazulith am Graulahnerkopf (Granatspitzgruppe, Hohe Tauern). Verh Geol B-A Wien 4: 115–116

    Google Scholar 

  • Duggan MD, Jones MT, Richards DNG, Kamprad JL (1990) Phosphate minerals in altered andesite from Mount Perry, Queensland, Australia. Can Mineral 28: 125–131

    Google Scholar 

  • Geijer P (1964) Genetic relationships of the association Al2SiO5 - lazulite - rutile. Ark Miner Geol 24: 423–464

    Google Scholar 

  • Greenwood NN, Earshaw A (1986) Chemistry of the elements. Pergamon Press, Oxford, pp 1–1542

    Google Scholar 

  • Hawthorne FC (1988) Möesbauer spectroscopy. Reviews in Mineralogy, Spectroscopic Methods in Mineralogy and Geology 18: 254–340

    Google Scholar 

  • Hesse K-F, Cemič L (1994a) Crystal structure of MgAlPO5. Z Krist 209: 660–661

    Google Scholar 

  • Hesse K-F, Cemič L (1994b) Crystal structure of FeAlPO5. Z Krist 209: 346–347

    Google Scholar 

  • Holland AE, Segnit ER (1980) Subsolidus relationships in the ternary system MgO-Al2O3-P2O5. J Aust Ceram Soc 16 (2): 17–19

    Google Scholar 

  • Jahn J (1985) Two new localities of lazulite in the Tribec Mountains. Mineralogica Slovaca 17: 333–334

    Google Scholar 

  • Kostiner ES (1972) Moessbauer effect study of triplite and related minerals. Am Mineral 57 (7-8): 1109–1114

    Google Scholar 

  • Lehmann G (1978) Die Farben von Mineralen und ihre Ursachen. Fortschr Miner 56 (2): 172–252

    Google Scholar 

  • Menzel M (1976) Zwei Lazulith-Fundstellen im Werfener Tonschiefer aus dem Salzburgischen (Osterreich). Aufschluß 27: 204

    Google Scholar 

  • Morteani G, Ackermand D (1996) Aluminium phosphates in muscovite-kyanite metaquartzites from Passo di Vizze (Alto Adige, NE Italy). Eur J Miner 8 (4): 853–869

    Google Scholar 

  • Nriagu JO (1984) Phosphate minerals: their properties and general mode of occurrence. In:Nriagu JO, Moore PB (eds) Phosphate minerals. Springer, Berlin Heidelberg New York Tokyo, pp 1–136

    Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray microanalysis, part I. Application to the analysis of homogeneous samples. La Recherche Aerospatiale 3: 12–36

    Google Scholar 

  • Schreyer W (1987) Pre- or synmetamorphic metasomatism in peraluminous metamorphic rocks. In:Helgeson HC (ed) Chemical transport in metasomatic processes. Reidel, Dordrecht, pp 265–296

    Google Scholar 

  • Watson TL (1921) Lazulite of the Graves Mountain, Georgia, with notes on other occurrences in the United States. J Washington Acad Sci 11: 386–391

    Google Scholar 

  • Weber K (1991) Pulver 91 - Ein Programm zur Auswertung von Pulverdiffraktogrammen. Institut für Mineralogie und Kristallographie, TU Berlin

    Google Scholar 

  • Wise WS, Loh S (1976) Equilibria and origin of minerals in the system Al2O3-AlPO4-H2O. Am Mineral 61: 409–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid-Beurmann, P., Morteani, G. & Cemič, L. Experimental determination of the upper stability of scorzalite, FeAl2[OH/PO4]2, and the occurrence of minerals with a composition intermediate between scorzalite and lazulite(ss) up to the conditions of the amphibolite facies. Mineralogy and Petrology 61, 211–222 (1997). https://doi.org/10.1007/BF01172485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172485

Keywords

Navigation