Skip to main content
Log in

Subduction-related Late Permian shoshonites of the Sydney Basin, Australia

Spät-permische Schoschonite des Sidney Beckens in Australien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Late Permian shoshonitic province of the southern Sydney Basin consists of lavas and intrusions confined to a 140 km long coastal belt, but geophysical and sedimentological data indicate that the province once had a length of at least 340 km. Both petrographic and geochemical data indicate shoshonitic affinities for these Late Permian rocks and, although the compositional range is from 48.4 to 60.6% SiO2, all units except an andesite lava have <55% SiO2. Subduction-related attributes of the province include enrichment in Al2O3 and LILE (Rb, K and LREE), depletion in HFSE (Nb, Ta, Zr, Hf and Ti), low Nb/U, and Sr/Nd of ∼ 30–35. Initial (at 250 Ma)87Sr/86Sr ranges from 0.70294 to 0.70440 whereasɛ Nd values range from +5.11 to +2.14 and plot almost exclusively in the mantle array. Low MgO and mg-numbers (maximum 7.37% and 64.5, respectively) demonstrate that none of the shoshonites represent primary magmas in equilibrium with mantle peridotite. Isotopic data and elemental contents are not supportive of a model in which crustal contamination is the dominant process in magma petrogenesis, but do not exclude contamination with Sr-rich material having a low87Sr/86Sr and highɛ Nd values.

A temporal correlation between igneous rocks from the southern Sydney Basin, Dampier Ridge, New England and Tasmania indicates a widespread magmatic event which was, at least in part, shoshonitic in character and which developed in response to subduction along the east coast of Gondwanaland. The geochemical similarity between the Dampier Ridge and Sydney Basin samples does not support a model for spatial compositional variation across a subduction-related magmatic belt but, coupled with the variations in isotopic ratios, implies heterogeneity in the source.

Zusammenfassung

Die spät-permische Schoschonit Provinz des südlichen Sidney Beckens besteht aus Laven und Intrusionen, die in einem 140 km langen Gürtel längs der Küste auftreten. Geophysikalische und sedimentologische Daten weisen darauf hin, daß diese Provinz ursprünglich eine Länge von mindestens 340 km hatte. Sowohl petrographische wie geochemische Daten weisen auf schoschonitische Affinität dieser spät-permischen Gesteine hin. Obwohl die SiO2 Gehalte von 48.4 bis 60.6% schwanken, haben alle Einheiten mit Ausnahme einer andesitischen Lava < 55%. Auf Subduktion weisen u.a. Anreicherungen an Al2O3 und LILE (Rb, K and LREE), die Verarmung an HFSE (Nb, Ta, Zr, Hf and Ti) niedrige Nb/U und Sr/Nd von ungefähr 30–35 hin. Die87Sr/86Sr Initiale, berechnet für 250 Ma, liegen zwischen 0.70294 und 0.70440 und dieɛ Nd-Werte zwischen +5,11 und +2,14 und fallen fast ausschließlich in den Mantel-Bereich. Niedrige MgO und mg-Zahlen (Maximal 7,37% bzw. 64,5) zeigen, daß die Schoschonite nicht primäre Magmen, die mit Mantelperidotiten im Gleichgewicht sind, darstellen. Isotopendaten und Elementgehalte weisen nicht auf ein Modell hin, bei dem Krusten-Kontamination bei der Magmen-Genese eine wichtige Rolle spielte, aber eine Nichtkontamination mit Material, das niedrige87Sr/86Sr Werte und hoheɛ Nd Werte hat, ist nicht auszuschließen. Eine zeitliche Beziehung zwischen den magmatischen Gesteinen des südlichen Sydney-Beckens, dem Dampier Ridge, Neuengland und Tasmanien weist auf ein weit verbreitetetes magmatisches Ereignis hin, das zumindest teilweise schoschonitischen Charakter hatte und das auf Subduktion längs der Ostküste von Gondwanaland zurückführbar ist. Die geochemische Ähnlichkeit von Proben des Dampier Ridge und des Sydney Beckens weist nicht auf räumliche Variationen in der Zusammensetzung über einen subduktionsbezogenen magmatischen Gürtel hin, sondern läßt eher, zusammen mit den Variationen der Isotopendaten, heterogene Quellen für diese Gesteine vermuten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baillie PW (1983) The Parmeer Super-group at Musselroe Bay: drilling results and possible Permian volcanic rocks. Tasmania Department of Minerals Report, 1983/58

  • Carr PF (1985) Geochemistry of Late Permian shoshonitic lavas from the southern Sydney Basin. In:Sutherland FL, Franklin BJ, Waltho AE (eds) Volcanism in Eastern Australia with case histories from New South Wales. Geol Soc Aust NSW Div Publ No l: 165–183

  • Carr PF (1995) The Coonemia Complex — a differentiated shoshonitic intrusion, southern Sydney Basin, Australia. S Afr J Geol 97: 486–495

    Google Scholar 

  • Carr PF, Facer RA (1980) Radiometric ages of some igneous rocks from the Southern and Southwestern Coalfields of New South Wales. Search 11: 382–383

    Google Scholar 

  • Carr PF, Fardy JJ (1984) REE geochemistry of Late Permian shoshonitic lavas of the Sydney Basin, New South Wales. Chem Geol 43: 187–201

    Google Scholar 

  • Chappell BW (1994) Lachlan and New England: Fold Belts of contrasting magmatic and tectonic development. J Proc Roy Soc NSW 127: 47–59

    Google Scholar 

  • Crawford AJ, Corbett KD, Everard JL (1992) Geochemistry of the Cambrian volcanichosted massive sulfide-rich Mount Read Volcanics, Tasmania, and some tectonic implications. Econ Geol 87: 597–619

    Google Scholar 

  • Evernden JE, Richards JR (1962) Potassium-argon ages in Eastern Australia. J Geol Soc Aust 9: 1–49

    Google Scholar 

  • Facer RA, Carr PF (1979) K-Ar dating of Permian and Tertiary igneous activity in the southeastern Sydney Basin, New South Wales. J Geol Soc Aust 26: 73–79

    Google Scholar 

  • Finlayson DM, McCracken HM (1981) Crustal structure under the Sydney Basin and Lachlan Fold Belt, determined from explosion seismic studies. J Geol Soc Aust 28: 177–190

    Google Scholar 

  • Harper LF (1915) Geology and mineral resources of the Southern Coalfield, part 1. The south coastal portion. Geol Surv NSW Mem 7

  • Hensel HD, McCulloch MT, Chappell BW (1985) The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochem Cosmochim Acta 49: 369–384

    Google Scholar 

  • Hergt JM, Chappell BW, McCulloch MT, McDougall I, Chivas AR (1989) Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. J Petrol 30: 841–883

    Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC, Lopez-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°–41°S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J Geophys Res 91: 5963–5983

    Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79: 33–45

    Google Scholar 

  • Jakes P, White AJR (1972) Major and trace element abundances in volcanic rocks of orogenic areas. Bull Geol Soc Am 83: 29–40

    Google Scholar 

  • Jones JG, Conagham PJ, McDonnell KL, Flood RH, Shaw SE (1984) Papuan Basin analogue and a foreland basin model for the Bowen-Sydney Basin. In:Veevers J (ed) Phanerozoic earth history of Australia. Clarendon Press, Oxford, pp 243–262

    Google Scholar 

  • Jones JG, Conagham PJ, McDonnell KL (1987) Coal measures of an orogenic recess: Late Permian Sydney Basin, Australia. Palaeogeog Palaeoclimat Palaeoecol 58: 203–219

    Google Scholar 

  • Joplin GA, Kiss E, Ware NG, Widdowson JR (1972) Some chemical data on members of the shoshonite association. Mineral Mag 38: 936–945

    Google Scholar 

  • Kay SM, Gordillo CE (1994) Poncho volcanic rocks and the melting of depleted continental lithosphere above a shallowly dipping subduction zone in the central Andes. Contrib Mineral Petrol 117: 25–44

    Google Scholar 

  • Leitch EC (1969) Igneous activity and diastrophism in New South Wales. Geol Soc Aust Spec Publ No 2: 21–37

    Google Scholar 

  • Lin P-N, Stern RJ, Bloomer SH (1989) Shoshonitic volcanism in the northern Mariana Arc 2. Large-ion lithophile and rare earth element abundances: evidence for the source of incompatible element enrichments in intraoceanic arcs. J Geophys Res 94: 4497–4514

    Google Scholar 

  • Lister GS, Etheridge MA (1989) Detachment models for uplift and volcanism in the Eastern Highlands, and their application to the origin of passive margin mountains. In:Johnson RW (ed) Intraplate volcanism in Eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 297–312

    Google Scholar 

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101: 1–18

    Google Scholar 

  • McDougall I, Maboko MAH, Symonds PA, McCulloch MT, Williams IS, Kudrass HR (1994) Dampier Ridge, Tasman Sea, as a stranded continental fragment. Aust J Earth Sci 41: 395–406

    Google Scholar 

  • Molzahn M, Reisberg L, Worner G (1996) Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Antarctica: evidence for an enriched subcontinental lithospheric source. Earth Planet Sci Lett 144: 529–546

    Google Scholar 

  • Morrison GW (1980) Characteristics and tectonic setting of the shoshonite rock association. Lithos 13: 97–108

    Google Scholar 

  • Müller D, Rock NMS, Groves DI (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineral Petrol 46: 259–289

    Google Scholar 

  • Nicholls J, Carmichael ISE (1969) A commentary on the absarokite-shoshonite-banakite series of Wyoming, USA. Schweiz Min Pet Mitt 49: 47–64

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58: 63–81

    Google Scholar 

  • Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of island-arc basalts: implications for mantle sources. Chem Geol 30: 227–256

    Google Scholar 

  • Retallack GJ (1977) Triassic palaeosols in the Upper Narrabeen Group of New South Wales, part II. Classification and reconstruction. J Geol Soc Aust 24: 19–35

    Google Scholar 

  • Ringis J, Hawkins LV, Seedsman K (1970) Offshore seismic and magnetic surveys of the Southern Coalfields off Stanwell Park. Australasian Inst Min Metall Proc 234: 7–16

    Google Scholar 

  • Rogers NW, Setterfield TN (1994) Potassium and incompatible-element enrichment in shoshonitic lavas from the Tavua volcano, Fiji. Chem Geol 118: 43–62

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contrib Mineral Petrol 90: 244–257

    Google Scholar 

  • Rogers NW, De Mulder M, Hawkesworth CJ (1992) An enriched mantle source for potassic basanites: evidence from Karisimbi volcano, Virunga volcanic province, Rwanda. Contrib Mineral Petrol 111: 543–556

    Google Scholar 

  • Runnegar B, McClung G (1975) A Permian time scale for Gondwanaland. In:Campbell KSW (ed) Gondwana geology. ANU Press, Canberra, pp 425–441

    Google Scholar 

  • Shaw RD (1978) Sea-floor spreading in the Tasman Sea: a Lord Howe Rise-eastern Australia reconstruction. Aust Soc Explor Geophys Bull 9: 75–81

    Google Scholar 

  • Shaw SE, Flood RH (1981) The New England Batholith, eastern Australia: geochemical variation in space and time. J Geophys Res 86: 10530–10544

    Google Scholar 

  • Sun S-S, McDonough WF, Ewart AE (1989) Four component dynamic model for East Australian basalts. In:Johnson RW (ed) Intraplate volcanism in Eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 333–347

    Google Scholar 

  • Thompson RN (1982) British Tertiary volcanic province. Scot J Geol 18: 49–107

    Google Scholar 

  • Veevers JJ, Conaghan PJ, Powell CMcA (1994) Eastern Australia. In:Veevers JJ, Powell CMcA (eds) Permian-Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland. Mem Geol Soc Am 184: 11–172

  • Wellman P (1979) On the Cainozoic uplift of southeastern Australian highland. J Geol Soc Aust 26: 1–9

    Google Scholar 

  • Whitford DJ, Korsch NJ, Porritt PM, Craven SJ (1988) Rare element distribution around the volcanogenic polymetallic massive sulphide deposit at Que River, Tasmania. Chem Geol 68: 105–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, P.F. Subduction-related Late Permian shoshonites of the Sydney Basin, Australia. Mineralogy and Petrology 63, 49–71 (1998). https://doi.org/10.1007/BF01162768

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162768

Keywords

Navigation