Skip to main content
Log in

Enzymatic resolution of amino acids via ester hydrolysis

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

The present review outlines recent examples of enzyme-based resolution procedures for amino acids via the hydrolysis of their esters. The resolutions have been achieved by using proteases (α-chymotrypsin, subtilisin and other microbial proteases, and sulfhydryl proteases of plant origin) and lipases. Relevant work utilizing yeast and other microbial cells is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta CK, Bahr ML, Burdett JE, Jr, Cessac JW, Martinez RA, Rao PN, Kim HK (1991) Synthesis of unnatural amino acids. J Chem Res (S): 110–111; J Chem Res (M): 0914–0934

  • Alberghina L, Schmid RD, Verger R (eds) (1991) Lipases: structure, mechanism and genetic engineering. VCH, Weinheim

    Google Scholar 

  • Alks V, Keith DD, Sufrin JR (1992) Synthesis of the constrainedl-methionine analog, (Z)-l-2-amino-4-methylthio-3-butenoic acid. Synthesis: 623–625

  • Anantharamaiah GM, Roeske RW (1982) Resolution ofα-methyl amino esters by chymotrypsin. Tetrahedron Lett 23: 3335–3336

    Google Scholar 

  • Ayi AI, Guedj R, Septe B (1995) Enzymatic hydrolysis of methyl 3,3-difluoro-2-amino esters. Synthesis ofD- andl-3,3-difluoro-2-amino acids and their derivatives. J Fluorine Chem 73: 165–169

    Google Scholar 

  • Barrett GC (1985) Resolution of amino acids. In: Barrett GC (ed) Chemistry and biochemistry of the amino acids. Chapman and Hall, London, pp 338–353

    Google Scholar 

  • Bevinakatti HS, Newadkar RV, Banerji AA (1990) Lipase-catalysed enantioselective ring-opening of oxazol-5(4H)-ones coupled with partial in situ racemisation of the less reactive isomer. J Chem Soc, Chem Commun: 1091–1092

  • Bevinakatti HS, Banerji AA, Newadkar RV, Mokashi AA (1992) Enzymatic synthesis of optically active amino acids. Effect of solvent on the enantioselectivity of lipase-catalysed ring-opening of oxazolin-5-ones. Tetrahedron: Asymmetry 3: 1505–1508

    Google Scholar 

  • Cantacuzène D, Pascal F, Guerreiro C (1987) Synthesis of amino acid esters by papain. Tetrahedron 43: 1823–1826

    Google Scholar 

  • Chen C-S, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104: 7294–7299

    Google Scholar 

  • Chen S-T, Wang K-T, Wong C-H (1986) Chirally selective hydrolysis ofD,l-amino acid esters by alkaline protease. J Chem Soc, Chem Commun: 1514–1516

  • Chen S-T, Chen S-Y, Hsiao S-C, Wang K-T (1991) Kinetic resolution ofN-protected amino acid esters in organic solvents catalyzed by a stable industrial alkaline protease. Biotechnol Lett 13: 773–778

    Google Scholar 

  • Chen S-T, Tsai C-F, Wang K-T (1994a) Resolution ofN-protected amino acid derivatives in supercritical carbon dioxide catalyzed by “alcalase”. Bioorg Med Chem Lett 4: 625–630

    Google Scholar 

  • Chen S-T, Huang W-H, Wang K-T (1994b) Resolution of amino acids in a mixture of 2methyl-2-propanol/water (19:1) catalyzed by alcalase via in situ racemization of one antipode mediated by pyridoxal 5-phosphate. J Org Chem 59: 7580–7581

    Google Scholar 

  • Chenault HK, Dahmer J, Whitesides GM (1989) Kinetic resolution of unnatural and rarely occurring amino acids: enantioselective hydrolysis ofN-acyl amino acids catalyzed by acylase I. J Am Chem Soc 111: 6354–6364

    Google Scholar 

  • Chênevert R, Létourneau M (1986) Enzymatic resolution ofN-acetylp-nitrophenylserinates. Chem Lett: 1151–1154

  • Chênevert R, Létourneau M, Thiboutot S (1990) Resolution ofβ-hydroxy-α-amino acids by the action of proteases on theirN-acyl methyl esters. Can J Chem 68: 960–963

    Google Scholar 

  • Chibata I, Tosa T, Sato T, Mori T (1976) Production of r-amino acids by aminoacylase adsorbed on DEAF-Sephadex. Methods Enzymol 44: 746–759

    PubMed  Google Scholar 

  • Coppola GM, Schuster HF (eds) (1987) Asymmetric synthesis: construction of chiral molecules using amino acids. Wiley, New York

    Google Scholar 

  • Crich JZ, Brieva R, Marquart P, Gu R-L, Flemming S, Sih CJ (1993) Enzymatic asymmetric synthesis ofα-amino acids. Enantioselective cleavage of 4-substituted oxazolin-5ones and thiazolin-5-ones. J Org Chem 58: 3252–3258

    Google Scholar 

  • Csuk R, Glänzer BI (1988) Enantioselective hydrolysis ofN-acetyl-fluoro-phenylalanineethylesters by lyophilised yeast. J Fluorine Chem 39: 99–106

    Google Scholar 

  • De Jersey J, Zerner B (1969) Spontaneous and enzyme-catalyzed hydrolysis of saturated oxazolinones. Biochemistry 8: 1967–1974

    PubMed  Google Scholar 

  • De Jersey J (1970) Specificity of papain. Biochemistry 9: 1761–1767

    PubMed  Google Scholar 

  • Dernoncour R, Azerad R (1987) Enantioselective hydrolysis of 2-(chlorophenoxy)propionic esters by esterases. Tetrahedron Lett 28: 4661–4664

    Google Scholar 

  • Desnuelle P (1972) The lipases. In: Boyer PO (ed) The enzymes, vol 7. Academic Press, New York, p 575

    Google Scholar 

  • Drueckhammer DG, Barbas CF, III, Nozaki K, Wong C-H, Wood CY, Ciufolini MA (1988) Chemoenzymic synthesis of chiral furan derivatives: useful building blocks for optically active structures. J Org Chem 53: 1607–1611

    Google Scholar 

  • Duthaler RO (1994) Recent developments in the stereoselective synthesis ofα-amino acids. Tetrahedron 50: 1539–1650

    Google Scholar 

  • Faber K (1995) Biotransformations in organic chemistry. Springer, Berlin Heidelberg New York Tokyo, p 37

    Google Scholar 

  • Fadnavis NW, Reddy NP, Bhalerao UT (1989) Reverse micelles, an alternative to aqueous medium for microbial reactions: yeast-mediated resolution ofα-amino acids in reverse micelles. J Org Chem 54: 3218–3221

    Google Scholar 

  • Folkers K, Kubiak T, Stepinski J (1984) Improved synthesis and resolution ofβ-(3-pyridyl)-Dl-α-alanine. Int J Peptide Protein Res 24: 197–200

    Google Scholar 

  • Fülling G, Sih CJ (1987) Enzymatic second-order asymmetric hydrolysis of ketorolac esters: in situ racemization. J Am Chem Soc 109: 2845–2846

    Google Scholar 

  • Gais HJ (1995) Hydrolysis and formation of carboxylic acid esters. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis. VCH, Weinheim, pp 196–200

    Google Scholar 

  • Gerig JT, Klinkenborg JC (1980) Binding of 5-fluoro-l-tryptophan to human serum albumin. J Am Chem Soc 102: 4267–4268

    Google Scholar 

  • Glänzer BI, Faber K, Griengl H (1987) Enantioselective hydrolyses by baker's yeast-II. Esters ofN-acetyl amino acids. Tetrahedron 43: 771–778

    Google Scholar 

  • Greenstein JP, Winitz M (1961a) Chemistry of the amino acids, vol 1. Wiley, New York, pp 733–735

    Google Scholar 

  • Greenstein JP, Winitz M (1961b) Chemistry of the amino acids, vol 2. Wiley, New York, pp 1753–1767

    Google Scholar 

  • Gu R-L, Lee I-S, Sih CJ (1992) Chemo-enzymatic asymmetric synthesis of amino acids. Enantioselective hydrolyses of 2-phenyl-oxazolin-5-ones. Tetrahedron Lett 33: 1953–1956

    Google Scholar 

  • Hallinan KO, Crout DHG, Errington W (1994) Simple synthesis ofl- andD-vinylglycine (2-aminobut-3-enoic acid) and related amino acids. J Chem Soc, Perkin Trans 1: 3537–3543

    Google Scholar 

  • Hunt S (1985) The non-protein amino acids. In: Barrett GC (ed) Chemistry and biochemistry of the amino acids. Chapman and Hall, London, pp 55–138

    Google Scholar 

  • Imperiali B, Prins TJ, Fisher SL (1993) Chemoenzymatic synthesis of 2-amino-3-(2,2′-bipyridinyl)propanoic acids. J Org Chem 58: 1613–1616

    Google Scholar 

  • Jacobs M, Eliasson M, Uhlen M, Flock J-I (1985) Cloning, sequence, and expression of subtilisin Carlsberg fromBacillus licheni formis. Nucleic Acids Res 13: 8913–8926

    PubMed  Google Scholar 

  • Jones JB, Beck JF (1976) Asymmetric syntheses and resolutions using enzymes. In: Jones JB, Sih CJ, Perlman D (eds) Applications of biochemical systems in organic chemistry. Wiley, New York, p 116

    Google Scholar 

  • Kallwass HKW, Yee C, Blythe TA, McNabb TJ, Rogers EE, Shames SL (1994) Enzymes for the resolution ofα-tertiary-substituted carboxylic acid esters. Bioorg Med Chem 2: 557–566

    PubMed  Google Scholar 

  • Kazlauskas RJ, Weissfloch ANE, Rappaport AT, Cuccia LA (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase fromPseudomonas cepacia, and lipase fromCandida rugosa. J Org Chem 56: 2656–2665

    Google Scholar 

  • Kullmann W (1987) Enzymatic peptide synthesis. CRC Press, Boca Raton, Florida, pp 50–52

    Google Scholar 

  • Lankiewicz L, Kasprzykowski F, Grzonka Z, Kettmann U, Hermann P (1989) Resolution of racemic amino acids with thermitase. Bioorg Chem 17: 275–280

    Google Scholar 

  • Liu W, Ray P, Benezra SA (1995) Chemo-enzymic synthesis of optically activeα,α-disubstitutedα-amino acids. J Chem Soc, Perkin Trans 1: 553–559

    Google Scholar 

  • Martres M, Gil G, Méou A (1994) Preparation of optically active aziridine carboxylates by lipase-catalyzed alcoholysis. Tetrahedron Lett 35: 8787–8790

    Google Scholar 

  • Miyazawa T, Takitani T, Ueji S, Yamada T, Kuwata S (1988) Optical resolution of unusual amino-acids by lipase-catalysed hydrolysis. J Chem Soc, Chem Commun: 1214–1215

  • Miyazawa T, Iwanaga H, Ueji S, Yamada T, Kuwata S (1989) Porcine pancreatic lipase catalyzed enantioselective hydrolysis of esters ofN-protected unusual amino acids. Chem Lett: 2219–2222

  • Miyazawa T, Mio M, Watanabe Y, Yamada T, Kuwata S (1992a) Lipase-catalyzed transesterification procedure for the resolution of non-protein amino acids. Biotechnol Lett 14: 789–794

    Google Scholar 

  • Miyazawa T, Iwanaga H, Yamada T, Kuwata S (1992b) Optical resolution of unusual amino acids using microbial proteases. Chirality 4: 427–431

    Google Scholar 

  • Miyazawa T, Iwanaga H, Yamada T, Kuwata S (1993) Utilization of proteases for the resolution of non-protein amino acids. Peptide Chemistry 1992: 94–96

    Google Scholar 

  • Miyazawa T, Iwanaga H, Yamada T, Kuwata S (1994) Resolution of non-protein amino acids via the enantioselective hydrolysis of their esters mediated by sulfhydryl proteases. Biotechnol Lett 16: 373–378

    Google Scholar 

  • Miyazawa T (1995) Enzymatic resolution of racemic fluorine-containing amino acids. In: Kukhar' VP, Soloshonok VA (eds) Fluorine-containing amino acids: synthesis and properties. Wiley, Chichester, pp 267–294

    Google Scholar 

  • Miyazawa T, Minowa H, Miyamoto T, Imagawa K, Yanagihara R, Yamada T (1997a) Resolution of non-protein amino acids via microbial protease-catalyzed ester hydrolysis: marked enhancement of enantioselectivity by the use of esters with longer alkyl chains and at low temperature. Tetrahedron: Asymmetry 8: 367–370

    Google Scholar 

  • Miyazawa T, Imagawa K, Yanagihara R, Yamada T (1997b) Marked dependence on temperature of enantioselectivity in theAspergillus oryzae protease-catalyzed hydrolysis of amino acid esters. Biotechnol Tech. 11: 931–933

    Google Scholar 

  • Morgan J, Pinhey JT (1994) Reaction of organolead triacetates with 4-ethoxycarbonyl-2methyloxazol-5-one. The synthesis ofα-aryl andα-vinylN-acetylglycine ethyl esters and their enzymic resolution. Tetrahedron Lett 35: 9625–9628

    Google Scholar 

  • Morihara K (1974) Comparative specificity of microbial proteinases. Adv Enzymol Relat Areas Mol Biol: 179–243

  • Ng-Youn-Chen MC, Serregi AN, Huang Q, Kazlauskas RJ (1994) Kinetic resolution of pipecolic acid using partially-purified lipase fromAspergillus niger. J Org Chem 59: 2075–2081

    Google Scholar 

  • Nielsen B, Fisker H, Ebert B, Madsen U, Curtis DR, Krogsgaard-Larsen P, Hansen JJ (1993) Enzymatic resolution of AMPA by use ofα-chymotrypsin. Bioorg Med Chem Lett 3: 107–114

    Google Scholar 

  • Nomoto M, Narahashi Y, Murakami M (1960) A proteolytic enzyme ofStreptomyces griseus. J Biochem 48: 593–602

    Google Scholar 

  • Phillips RS (1992) Temperature effects on stereochemistry of enzymatic reactions. Enzyme Microb Technol 14: 417–419

    Google Scholar 

  • Phillips RS (1996) Temperature modulation of the stereochemistry of enzymatic catalysis: prospects for exploitation. Trends Biotechnol 14: 13–16

    Google Scholar 

  • Porter J, Dykert J, Rivier J (1987) Synthesis, resolution and characterization of ring substituted phenylalanines and tryptophans. Int J Peptide Protein Res 30:13–21

    Google Scholar 

  • Pugniere M, Domergue N, Castro B, Previero A (1994) Pronase in amino acid technology: optical resolution of nonproteinogenicα-amino acids. Chirality 6: 472–478

    Google Scholar 

  • Rao PN, Burdett JE, Jr, Cessac JW, DiNunno CM, Peterson DM, Kim HK (1987) Synthesis of 3-(3-pyridyl)- and 3-(3-benzo[b]thienyl)-D-alanine. Int J Peptide Protein Res 29: 118–125

    Google Scholar 

  • Ratcliffe SJ, Young GT, Stein RL (1985) 2-Amino-4-(3-pyridyl) butyric acid and related peptides. J Chem Soc, Perkin Trans 1: 1767–1771

    Google Scholar 

  • Roberts DC, Vellaccio F (1983) Unusual amino acids in peptide synthesis. In: Gross E, Meienhofer J (eds) The peptides, vol 5. Academic Press, New York, pp 341–449

    Google Scholar 

  • Roper JM, Bauer DP (1983) Synthesis of phenylalanines in high enantiomeric excess via enzymatic resolution. Synthesis: 1041–1043

  • Schricker B, Thirring K, Berner H (1992)α-Chymotrypsin catalyzed enantioselective hydrolysis of alkenyl-α-amino acid esters. Bioorg Med Chem Lett 2: 387–390

    Google Scholar 

  • Schutt H, Schmidt-Kastner G, Arens A, Preiss M (1985) Preparation of optically activeD-arylglycines for use as side chains for semisynthetic penicillins and cephalosporins using immobilized subtilisins in two-phase systems. Biotechnol Bioeng 27: 420–433

    Google Scholar 

  • Sheardy R, Liotta L, Steinhart E, Champion R, Rinker J, Planutis M, Salinkas J, Boyer T, Carcanague D (1986) The enzymatic resolution of aromatic amino acids. J Chem Educ 63:646–647

    Google Scholar 

  • Solladié-Cavallo A, Schwarz J, Burger V (1994) A four-step, highly enantioselective synthesis and enzymatic resolution of 3,4-dichloro-phenylalanine. Tetrahedron: Asymmetry 5: 1621–1626

    Google Scholar 

  • Tong JH, Petitclerc C, D'lorio A, Benoiton NL (1971) Resolution of ring-substituted phenylalanines by the action ofα-chymotrypsin on their ethyl esters. Can J Biochem 49: 877–881

    PubMed  Google Scholar 

  • Trincone A, Palmieri G, Lama L, Nicolaus B, De Rosa M, Gambacorta A (1990) Kinetic resolution of aminoacid ester with immobilized cells ofSulfolobus solfataricus. Biotechnol Lett 12: 717–720

    Google Scholar 

  • Turner NJ, Winterman JR, McCague R, Parratt JS, Taylor SJC (1995) Synthesis of homochirall,-(S)-tert-leucine via a lipase catalysed dynamic resolution process. Tetrahedron Lett 36: 1113–1116

    Google Scholar 

  • Williams RM (1989) Synthesis of optically activeα-amino acids. Pergamon Press, Oxford

    Google Scholar 

  • Wong C-H, Whitesides GM (1994) Enzymes in synthetic organic chemistry. Pergamon (Elsevier), Oxford, pp 70–108

    Google Scholar 

  • Xie Z-D, Liu L-P, Wu Q, He B-L (1995) Resolution ofDl-phenylalanine by procine pancreas lipase catalyzed transesterification in monophasic organic solvent. Chin Sci Bull 40: 41–44

    Google Scholar 

  • Yamskov A, Tikhonova TV, Davankov VA (1981) Proteases as catalysts of enantioselectiveα-amino ester hydrolysis: 3. Pronase catalysed hydrolysis of methyl esters of leucine, phenylalanine and valine. Enzyme Microb Technol 3: 141–143

    Google Scholar 

  • Yee C, Blythe TA, McNabb TJ, Walts AE (1992) Biocatalytic resolution of tertiary asubstituted carboxylic acid esters: efficient preparation of a quaternary asymmetric carbon center. J Org Chem 57: 3525–3527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazawa, T. Enzymatic resolution of amino acids via ester hydrolysis. Amino Acids 16, 191–213 (1999). https://doi.org/10.1007/BF01388169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388169

Keywords

Navigation