Skip to main content
Log in

The viscoelasticity of spinnable solutions of alkyltrimethylammonium salicylates

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The viscoelasticity has been measured for aqueous solutions of tetradecyl-and hexadecyltrimethylammonium salicylates (C14TASal, C16TASal). The aqueous solutions of C14TASal without salt displayed the gel-like behavior at 10.0×10−2 g cm−3, but those more dilute than 3.2×10−2 g cm−3 presented the viscoelasticity similar to that of a Maxwell liquid. The Maxwell-like behavior was converted to the polymer-like one on the addition of (0.1–0.2) M NaBr or (0.02–0.2) M NaSal. The gel-like viscoelasticity can be connected with the spinnability of “cohesive fracture failure”, and the Maxwell-like and polymer-like viscoelasticities are concerned with the spinnability of “ductile failure”. The gel-like and Maxwell-like viscoelasticities originate in the pseudo-network formed by the pseudo-linkages between rodlike micelles, while the polymer-like viscoelasticity is caused by the entanglement of long rodlike micelles in semidilute and concentrated solutions. The aqueous solutions of C16TASal behaved very similar to those of C14TASal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imae T (1989) Langmuir 5:205

    Google Scholar 

  2. Sasaki M, Imae T, Ikeda S (1989) Langmuir 5:211

    Google Scholar 

  3. Ulmius J, Wennerström H, Johansson LB-Å, Lindblom G, Gravsholt S (1979) J Phys Chem 83:2232

    Google Scholar 

  4. Hoffmann H, Platz G, Rehage H, Schorr W (1981) Ber Bunsenges Phys Chem 85:877

    Google Scholar 

  5. Hoffmann H, Platz G, Rehage H, Schorr W (1982) Adv Colloid Inter Sci 17:275

    Google Scholar 

  6. Rehage H, Hoffmann H (1983) Faraday Discuss Chem Soc 76:363

    Google Scholar 

  7. Angel M, Hoffmann H, Löbl M, Reizlein K, Thurn H, Wunderlich I (1984) Progr Colloid Polym Sci 69:12

    Google Scholar 

  8. Thurn H, Löbl M, Hoffmann H (1985) J Phys Chem 89:517

    Google Scholar 

  9. Hoffmann H, Löbl H, Rehage H, Wunderlich I (1985) Tenside Deterg 22:290

    Google Scholar 

  10. Shikata T, Hirata H, Kotaka T (1987) Langmuir 3:1081; (1988) Langmuir 4:354; (1989) Langmuir 5:398

    Google Scholar 

  11. Rehage H, Hoffmann H (1988) J Phys Chem 92:4712

    Google Scholar 

  12. Shikata T, Hirata H, Takatori E, Osaki K (1988) J Non-Newtonian Fluid Mechanics 28:171

    Google Scholar 

  13. Gravsholt S (1976) J Colloid Interface Sci 57:575

    Google Scholar 

  14. Imae T, Hashimoto K, Ikeda S (1990) Colloid Polym Sci 268:460

    Google Scholar 

  15. Imae T (1990) J Phys Chem 94:5954

    Google Scholar 

  16. Imae T, submitting

  17. Ide Y, White JL (1976) J Appl Polym Sci 20:2511

    Google Scholar 

  18. Okuda H, Imae T, Ikeda S (1987) Colloids Surfaces 27:187

    Google Scholar 

  19. Lodge AS (1964) Elastic Liquids; Academic Press: New York; Ferry JD (1980) Viscoelastic Properties of Polymers; 3rd ed, Wiley: New York

    Google Scholar 

  20. Cox WP, Merz EH (1958) J Polym Sci 28:619

    Google Scholar 

  21. Stadler R, de Lucca Freitas L (1986) Colloid Polym Sci 264:773

    Google Scholar 

  22. de Lucca Freitas L, Stadler R (1987) Macromolecules 20:2478

    Google Scholar 

  23. Olsson U, Söderman O, Guéring P (1986) J Phys Chem 90:5223

    Google Scholar 

  24. Nakagawa T (1952) Bull Chem Soc Japan 25:88; 25:93

    Google Scholar 

  25. Denn MM, Marrucci G (1971) AIChE J 17:101

    Google Scholar 

  26. Everage Jr AE, Gordon RJ (1971) AIChE J 17:1257

    Google Scholar 

  27. Denn MM, Petrie CJS, Avenas P (1975) AIChE J 21:791

    Google Scholar 

  28. Kamei E, Onogi S (1976) Polymer J 8:347

    Google Scholar 

  29. Fisher RJ, Denn MM (1976) AIChE J 22:236

    Google Scholar 

  30. Denn MM, Marrucci G (1977) J Non-Newtonian Fluid Mech 2:159

    Google Scholar 

  31. Petrie CJS (1977) J Non-Newtonian Fluid Mech 2:221

    Google Scholar 

  32. Ide Y, White JL (1977) J Non-Newtonian Fluid Mech 2:281

    Google Scholar 

  33. Ide Y, White JL (1978) J Appl Polym Sci 22:1061

    Google Scholar 

  34. Gupta RK, Puszynski J, Sridhar T (1986) J Non-Newtonian Fluid Mech 21:99; 21:115.

    Google Scholar 

  35. Sridhar T, Gupta RK (1988) J Non-Newtonian Fluid Mech 27:349

    Google Scholar 

  36. Chan RC, Gupta RK, Sridhar T (1988) J Non-Newtonian Fluid Mech 30:267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, K., Imae, T. & Nakazawa, K. The viscoelasticity of spinnable solutions of alkyltrimethylammonium salicylates. Colloid Polym Sci 270, 249–258 (1992). https://doi.org/10.1007/BF00655477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655477

Key words

Navigation