Skip to main content
Log in

Phase behavior and dynamic properties in mixed systems of anionic and cationic surfactants: lithium perfluorooctanesulfonate/diethanolheptadecafluoro-2-undecanolmethylammonium chloride (DEFUMAC) and lithium dodecyl sulfate/DEFUMAC aqueous mixtures

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two ternary phase diagrams of the cationic perfluorosurfactant diethanolheptadecafluoro-2-undecanolmethylammonium chloride (DEFUMAC) with an anionic perfluorosurfactant lithium perfluorooctanesulfonate (LiFOS) and an anionic hydrocarbon surfactant lithium dodecyl sulfate (LiDS) have been established at 25°C. The total surfactant concentration was less than 20wt%. In a wide mixing region of the LiFOS/DEFUMAC system, a lamellar-type phase,P β, was identified by its texture under a polarization microscope and by its x-ray diffraction pattern. Dispersed fragments ofP β-phase are present in the dilute solutions in which one surfactant was in excess. The anisotropy of electrical conductivity, flow birefringence, dynamic light scattering, and electric briefringence demonstrate that theP β fragments are disk-like with a radius of 0.7 μm. The disk-likeP β particles are transformed by shear into a spherical aggregate ofL α above a critical shear gradient. LiDS/DEFUMAC mixed solution forms dispersed and precipitatedL α in the dominant region. Radius and micropolarity of the dispersedL α aggregates are decreased as the ratio of LiDS:DEFUMAC approaches 1:1. On the basis of x-ray diffraction measurement the structure of precipitatedL α-phase seems to consist of monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen DH, Hall DG (1973) Kolloid-Z u Z Polymere 251:41–44

    Google Scholar 

  2. Barker CA, Saul D, Tiddy GJT, Wheeler BA, Willis E (1974) J Chem Soc Faraday Trans II 70:154–162

    Google Scholar 

  3. Buckingham JH, Lucassen J, Hollway F (1978) J Colloid Interface Sci 67:423–431

    Google Scholar 

  4. Jokela P, Jönsson B, Wennerström H (1985) Progr Colloid Polym Sci 123:186–200

    Google Scholar 

  5. Malliaris A, Binana-Bimbele W, Zana R (1986) J Colloid Interface Sci 110:114–120

    Google Scholar 

  6. Jokela P, Jönsson B, Khan A (1987) J Phys Chem 91:3291–3298

    Google Scholar 

  7. Stellner KL, Amante JC, Scamehorn JF, Harwell JH (1988) J Colloid Interface Sci 123:186–200

    Google Scholar 

  8. Kato T, Iwai M, Seimiya T (1989) J Colloid Interface Sci 130:439–447

    Google Scholar 

  9. Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JAN (1989) Science 245:1371–1374

    Google Scholar 

  10. Fukuda H, Kawata K, Okuda H (1990) J Am Chem Soc 112:1635–1637

    Google Scholar 

  11. Winsor PA (1968) Chem Rev 68:1–40

    Google Scholar 

  12. Israelachivili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans II 72:1525–1568

    Google Scholar 

  13. Tiddy GJT (1980) Physics Reports (Review Section of Physics Letters) 57:1–46

    Google Scholar 

  14. Mitchell DJ, Ninham BW (1981) J Chem Soc Faraday Trans II 77:601–629

    Google Scholar 

  15. Jönsson B, Wennerström H (1981) J Colloid Interface Sci 80:482–496

    Google Scholar 

  16. Berr SS, Jones RRM (1989) J Phys Chem 93:2555–2558

    Google Scholar 

  17. Hoffmann H, Kalus J, Thurn H (1983) Colloid & Polymer Sci 261:1043–1049

    Google Scholar 

  18. Fontell K, Lindman B (1983) J Phys Chem 87:3289–3297

    Google Scholar 

  19. Hoffmann H (1984) Ber Bunsenges Phys Chem 88:1078–1093

    Google Scholar 

  20. Mukerjee P, Yang AYS (1976) J Chem Soc 80:1388–1390

    Google Scholar 

  21. Funasaki N, Hada S (1980) J Phys Chem 84:736–744

    Google Scholar 

  22. Shinoda K, Nomura T (1980) J Phys Chem 84:365–369

    Google Scholar 

  23. Meguro K, Ueno M, Suzuki T (1982) Yukagaku 31:909–914

    Google Scholar 

  24. Asakawa T, Johten K, Miyagishi S, Nishida M (1988) Langmuir 4:136–140

    Google Scholar 

  25. Tamori K, Esumi K, Meguro K (1991) J Colloid Interface Sci 142:236–243

    Google Scholar 

  26. Ootoshi S (1982) Reports Res Lab Asahi Glass Co Ltd 32:129–139

    Google Scholar 

  27. Rosevear FB (1954) JAOCS 31:628–639

    Google Scholar 

  28. Sato K, Mishima K (1984) Hyomen 22:579–593

    Google Scholar 

  29. Götz KG, Heckmann K (1958) J Colloid Sci 13:266–272

    Google Scholar 

  30. Rehage H, Wunderlich I, Hoffmann H (1986) Prog Colloid Polym Sci 72:51–59

    Google Scholar 

  31. Schorr W, Hoffmann H (1985) In: Corso XC (ed) Physics of Amphiphiles: Micelles, Vesicles and Microemulsions, p 160–180

  32. Kalyanasundara K, Thomas JK (1977) J Phys Chem 81:2176–2180

    Google Scholar 

  33. Deguchi K, Mino J (1978) J Colloid Interface Sci 65:155–161

    Google Scholar 

  34. Janiak MJ, Small DM, Shiphey GG (1976) Biochemistry 15:1475–1480

    Google Scholar 

  35. Atkins PW (1990) In: Physical Chemistry 4th ed. Oxford University Press pp 961

  36. Adam CD, Durrant JA, Lowry MR, Tiddy GJT (1984) J Chem Soc Faraday Trans I 80:789–801

    Google Scholar 

  37. Vincent JM, Skoulios AE (1966) Acta Cryst 20:432–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamori, K., Kihara, K., Sanda, H. et al. Phase behavior and dynamic properties in mixed systems of anionic and cationic surfactants: lithium perfluorooctanesulfonate/diethanolheptadecafluoro-2-undecanolmethylammonium chloride (DEFUMAC) and lithium dodecyl sulfate/DEFUMAC aqueous mixtures. Colloid Polym Sci 270, 885–893 (1992). https://doi.org/10.1007/BF00657733

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657733

Key words

Navigation