Skip to main content
Log in

Pockels-effect relaxation in poled side chain polymers: Decoupling of chromophor reorientation from α-relaxation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The relaxation of the polar order of poled side chain polymers carrying NLO-active chromophores was monitored by Pockels-effect relaxation studies. Dielectric relaxation investigations were performed in order to analyze the coupling or decoupling of the chromophore reorientation to the relaxation modes of the side chain polymers. It was found that the chromophores perform their own reorientation relaxation mode both in the molten and the glassy state, which is not coupled to backbone relaxations. The chromophore reorientation process is characterized by a narrow distribution of the relaxation times and high activation energies. Studies on physical aging reveal that the chromophore reorientation is controlled by the free volume. The chromophore reorientation process can be influenced by the chemical linkage of the chromophore to the polymer backbone and by the nature of the backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byer RL (1974) Ann Rev Mat Sci 4:147

    Article  CAS  Google Scholar 

  2. Chen CT, Liu GZ (1986) Ann Rev Mat Sci 16:203

    Article  CAS  Google Scholar 

  3. Boyd GT (1989) J Opt Soc Am B 6:685

    Article  CAS  Google Scholar 

  4. Staring EGJ (1991) Recl Trav Chim Pays-Bas 110:492

    CAS  Google Scholar 

  5. Dalton LR, Harper AW, Wu B, Ghosn R, Laquindanum J, Liang Z, Hubbel A, Xu C (1995) Adv Mater 7:519

    Article  CAS  Google Scholar 

  6. Lalama SJ, Garito AF (1979) Phys Rev A 20:1179

    Article  CAS  Google Scholar 

  7. Prasad PN, Williams DJ (1991) Introduction to Nonlinear Optical Effects in Molecules & Polymer. Wiley, Chichester

    Google Scholar 

  8. Yariv A (1991) Optical Electronics, 4th ed. Saunders College Publishing, Fort Worth

    Google Scholar 

  9. Wright ME, McFarland IE, Hayden LM, Brower SC (1995) Macromolecules 28:8129

    Article  CAS  Google Scholar 

  10. Zentel R, Baumann H, Scharf D, Eich M, Schönfeld A, Kremer F (1993) Mak-romol Chem Rapid Com 14:121

    Article  CAS  Google Scholar 

  11. Kang CS, Heldmann C, Winkelhahn HJ, Schulze M, Neher D, Wegner G, Wor-tmann R, Glania C, Kramer P (1994) Macromolecules 27:6156

    Article  CAS  Google Scholar 

  12. Eich M, Beisinghoff H, Knödler B, Ohl M, Sprave M, Vydra J, Eckl M, Stroh-riegel P, Dorr M, Zentel R, Ahlheim M, Stähelin M, Zysset B, Liang J, Levenson R, Zyss J (1994) Proc SPIE Conf 2285:104

    Article  CAS  Google Scholar 

  13. Miller RD, Burland DM, Jurich M, Lee VY, Moylan CR, Thackara JL, Twieg RJ, Verbiest T, Volksen W (1995) Macromolecules 28:4970

    Article  CAS  Google Scholar 

  14. Kuzyk MG, Moore RC, King LA (1990) J Opt Soc Am B 7:64

    Article  CAS  Google Scholar 

  15. Hampsch HL, Yang J, Wong GK, Tor-kelson JM (1990) Macromolecules 23:3648

    Article  CAS  Google Scholar 

  16. Hampsch HL, Yang J, Wong GK, Tor-kelson JM (1990) Macromolecules 23:3640

    Article  CAS  Google Scholar 

  17. Köhler W, Robello DR, Dao PT, Will-and CS, Williams DJ (1990) J Chem Phys 93:9157

    Article  Google Scholar 

  18. Boyd GT, Francis CV, Trend JE, Ender DA (1991) J Opt Soc Am B 8:887

    Article  CAS  Google Scholar 

  19. Man HT, Yoon HN (1992) Adv Mater 4:159

    Article  CAS  Google Scholar 

  20. Dhinojwala A, Wong GK, Torkelson JM (1993) Macromolecules 26:5943

    Article  CAS  Google Scholar 

  21. Dhinojwala A, Wong GK, Torkelson JM (1994) J Chem Phys 100:6046

    Article  CAS  Google Scholar 

  22. Dhinojwala A, Hooker JC, Torkelson JM (1994) J Non-Cryst Solids 172–174:286

    Article  Google Scholar 

  23. Qui T-C, Chikaki S, Kanato H (1994) Polymer 35:4465

    Article  Google Scholar 

  24. Liu LY, Rankrishna D, Lachritz HS (1994) Macromolecules 27:5987

    Article  CAS  Google Scholar 

  25. Wang CH, Guan HW, Gu SH (1994) J Non-Cryst Solids 172–174:705

    Article  Google Scholar 

  26. Wang H, Jarnagin RC, Samulski ET (1994) Macromolecules 27:4705

    Article  CAS  Google Scholar 

  27. Dirk CW, Devanathan S, Velez M, Ghebremichael F, Kuzyk MG (1994) Macromolecules 27:6167

    Article  CAS  Google Scholar 

  28. Brower SC, Hayden LM (1995) J Polym Sci B 33:2391

    Article  CAS  Google Scholar 

  29. Hooker JC, Torkelson JM (1995) Macromolecules 28:7683

    Article  CAS  Google Scholar 

  30. Staring EGJ, Rikken GLJA, Seppen CJE, Nijhuis S, Venhuizen AHJ (1991) Polym Prep 32:118

    CAS  Google Scholar 

  31. Staring EGJ, Synthesis of Polyurethanes with NLO-active Sidegroups

  32. Kremer F, Boese D, Meier G, Fischer EW (1989) Prog Colloid Polym Sci 80: 129

    Article  CAS  Google Scholar 

  33. Kohlrausch F (1847) Pogg Ann Phys 12: 393

    Google Scholar 

  34. Kohlrausch F (1863) Pogg Ann Phys 29: 337

    Article  Google Scholar 

  35. Williams G, Watts DC (1970) Trans Faraday Soc 73:3348

    Google Scholar 

  36. Burger C (1994) Dissertation thesis, Phi-lipps-Universität Marburg

  37. Palmer RG. Stein DL, Abrahams E, Anderson PW (1984) Phys Rev Lett 53:958

    Article  Google Scholar 

  38. Bahar I, Erman B, Fytas G, Steffen W (1994) Macromolecules 27:5200

    Article  CAS  Google Scholar 

  39. Schüssler S, Richert R, Bässler H (1994) Macromolecules 27:4318

    Article  Google Scholar 

  40. Richert R (1985) Chem Phys Lett 118:534

    Article  CAS  Google Scholar 

  41. Richert R (1989) In: Bässler (ed) Optical Technics to Characterize Polymer Systems 5th ed Elsevier Science Publishers, Amsterdam, p 71

    Google Scholar 

  42. Ishida Y, Yamafuji K (1961) Kolloid-Z 177:97

    Article  CAS  Google Scholar 

  43. Ribelles JLG, Calleja RD (1984) J Mac-rom Sci Phys B 23:255

    Article  Google Scholar 

  44. Ribelles JLG, Calleja RD (1985) J Polym Sci Polym Phys Ed 23:1297

    Article  Google Scholar 

  45. Rehage G, Borchard W (1973) In: Ha-ward RN (ed) The Physics of Glassy Polymers. Applied Science Publishers, London, p 54

    Google Scholar 

  46. Struik LCE (1978) Physical Aging of Amorphous Polymers and Other Materials. Elsevier Science, Amsterdam

    Google Scholar 

  47. Matsuoka S (1981) Polym Eng Sci 21: 907

    Article  CAS  Google Scholar 

  48. Hutchinson JM (1995) Progr Polym Sci 20:703

    Article  CAS  Google Scholar 

  49. Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, Spiess HW (1994) Macromolecules 27:4733

    Article  CAS  Google Scholar 

  50. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701

    Article  CAS  Google Scholar 

  51. Baehr C, Glüsen B, Wendorff JH (1994) Macrom Rapid Com 15:327

    Article  CAS  Google Scholar 

  52. Havriliak S, Negami S (1966) J Polym Sci 14:99

    Google Scholar 

  53. Zentel R, Strobl GR, Ringsdorf H (1985) Macromolecules 18:960

    Article  CAS  Google Scholar 

  54. Williams G (1993) In: Thomas EL (ed) Structure and Properties of Polymers Vol 12. VCH, Weinheim, p 471

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baehr, C., Glüsen, B., Wendorff, J.H. et al. Pockels-effect relaxation in poled side chain polymers: Decoupling of chromophor reorientation from α-relaxation. Colloid Polym Sci 275, 234–243 (1997). https://doi.org/10.1007/s003960050077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003960050077

Key words

Navigation