Skip to main content
Log in

DNA-and classical genetic markers in schizophrenia

  • Molecular Genetics of Schizophrenia
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Summary

Interest in genetic marker studies of schizophrenia has been considerably enhanced by the advent of recombinant DNA technology, which has dramatically increased the number of available markers. In the present paper, we review studies that have been carried out using classical markers as well as the more recent molecular studies. The problems that arise when schizophrenia is studied in this way are discussed and attempts are made to account for some of the conflicting findings in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander RC, Coggiano M, Daniel DG, Wyatt RJ (1990) HLA antigen in schizophrenia. Psychiatry Res 31:221–233

    Google Scholar 

  • Andrew B, Watt DC, Gillespie C, Chapel H (1987) A study of genetic linkage in schizophrenia. Psychol Med 17:363–370

    Google Scholar 

  • Asaka A, Okazaki Y, Namura I, Juji T (1981) Study of HLA antigens among Japanese schizophrenics. Br J Psychiatry 138:498–500

    Google Scholar 

  • Aschauer HN, Aschauer-Treiber G, Isenberg KE, Todd RD, Knesevich MA, Garner DL, Reich T, Cloninger CB (1990) No evidence for linkage between chromosome 5 markers and schizophrenia. Hum Hered 40:109–115

    Google Scholar 

  • Baron M (1976) Albinism and schizophreniform psychosis: a pedigree study. Am J Psychiatry 133:1070–1073

    Google Scholar 

  • Bassett A, McGillvray BC, Jones BD, Pantzar JT (1988) Partial trisomy chromosome 5 co-segregating with schizophrenia. Lancet I:799–801

    Google Scholar 

  • Chadda R, Kullhara P, Singh T, Sehgal S (1986) HLA antigens in schizophrenia: a family study. Br J Psychiatry 149:612–615

    Google Scholar 

  • Chamberlain S, Shaw J, Rowland A, et al (1988) Mapping of mutation causing Friedreich's ataxia to human chromosome 9. Nature 334:248–250

    Google Scholar 

  • Collinge J, Boccio A, Delisi LE, Johnstone E, Lofthousen R, Owen F, Poulter M, Risby D, Shah T, Crow TJ (1989) Evidence for a pseudoautosomal locus for schizophrenia: a sibling pair analysis. Cytogenet Cell Genet 51:978

    Google Scholar 

  • Crow TJ (1987) Pseudoautosomal locus for psychosis? Lancet II:1532

    Google Scholar 

  • Crow TJ (1988) Sex chromosomes and psychosis: the case for a pseudoautosomal locus. Br J Psychiatry 153:675–683

    Google Scholar 

  • Crow TJ, Delisi LE, Johnstone EC (1989) Concordance by sex in sibling pairs with schizhophrenia is paternally inherited: evidence for a pseudoautosomal locus. Br J Psychiatry 155:92–97

    Google Scholar 

  • Crowe RR, Thompson IS, Flink RF, Weinberger B (1979) HLA antigens and schizophrenia. Arch Gen Psychiatry 36:231–233

    Google Scholar 

  • Detera-Wadleigh SD, Goldin LR, Sherrington R, Encio I, de Miguel E, Barrettini W, Gurling H (1989) Exclusion of linkage to 5q11–13 in families with schizophrenia and other psychiatric disorders. Nature 340:391–392

    Google Scholar 

  • Diehl S, Su Y, Aman M, Machean C, Walsh D, O'Hare A, McGulte M, Kidd K, Kendler K (1989) Paper presented at the First World Congress on Psychiatric. Genetics, Cambridge

  • Eberhard G, Franzen G, Low B (1975) Schizophrenia susceptibility and HLA antigens. Neuropsychobiology 1:211–217

    Google Scholar 

  • Elston RC, Kringlen E, Namboodri KK (1973) Possible linkage relationship between certain blood groups and schizophrenia or other psychoses. Behav Genet 3:101–106

    Google Scholar 

  • Goate AM, Haynes AR, Owen MJ, Farrell M, James LA, Lai LYC, Mullan MT, Roques P, Rosser MN, Williamson R, Hardy JA (1989) Predisposing locus for Alzheimer's Disease on chromosome 21. Lancet I:355–359

    Google Scholar 

  • Goldin LR, De Lisi LF, Gershon ES (1987) The relationship of HLA to schizophrenia in 10 nuclear families. Psychiatry Res 20:69–78

    Google Scholar 

  • Grandy KD, Litt M, Allen N, Bunzow JR, Marchionni M, Makam H, Reed L, Magenis RE, Civelli O (1989) The human dopamine D2 receptor gene is located on chromosome 11 at q22–23 and identifies a Taq 1 RFLP. Am J Hum Genet 45:778–785

    Google Scholar 

  • Gurling H (1990) Review. Transmission 9:15

    Google Scholar 

  • Holland T, Gosden C (1990) A balanced chromosomal translocation partially co-segregating with psychotic illness in a family. Psychiatry Res 32:1–8

    Google Scholar 

  • Human Gene Mapping 10 (1989) Tenth International Workshop on Human Gene Mapping. Cytogenet Cell Genet 51:1–1148

    Google Scholar 

  • Ivanyi D, Zemek P, Ivanyi P (1978) HLA antigens as possible markers of heterogeneity in schizophrenia. J Immunogenet 5:165–172

    Google Scholar 

  • Ivanyi P, Droes J, Schreuder GMT, D'Amaro J, van Rood JJ (1983) A search for association of HLA antigens with paranoid schizophrenia. Tissue Antigens 22:186–193

    Google Scholar 

  • Julien RA, Mercier P, Choaraqui IP, Sutter TM (1978) Schizophrenes et antigenes d'histocompatibilite. Encephale IV:99–113

    Google Scholar 

  • Kendler KS (1987) The feasibility of linkage studies in schizophrenia. In: Helmchen H, Henn FA (eds) Biological perspectives of schizophrenia. John Wiley, Chichester

    Google Scholar 

  • Kennedy JL, Giuffra LA, Moises HW, Cavalli-Sforza LL, Pakstis AJ, Kidd JR, Castiglione CM, Sjogren B, Wetterberg L, Kidd KK (1988) Evidence against linkage of schizophrenia to markers on chromosome 5 in a northern Swedish pedigree. Nature 336:167–170

    Google Scholar 

  • Lander ES (1988) Splitting schizophrenia. Nature 336:105–106

    Google Scholar 

  • Leboyer M, Malafosse A, Boularand S, Campion D, Gheysen F, Somolyk D, Henriksson B, Denise E, des Lauriers A, Lepine JP, Zarfian E, Clerget-Darpeux F, Mallet J (1990) Tyrosine hydroxylase polymorphisms associated with manic-depressive illness. Lancet 335:1219

    Google Scholar 

  • Propert DN (1983) Immunoglobulin allotypes Gm and Km in chronic schizophrenia: no apparent association. Psychol Med 13:27–30

    Google Scholar 

  • McGue M, Gottesman II, Rao DC (1985) Resolving genetic models for the transmission of schizophrenia. Genet Epidemiol 2:99–110

    Google Scholar 

  • McGuffin P, Farmer AE, Rajah SM (1978) Histocompatibility antigens and schizophrenia. Br J Psychiatry 132:149–151

    Google Scholar 

  • McGuffin P, Farmer AE, Yonase A (1981) HLA antigens and subtypes of schizophrenia. Psychiatry Res 5:115–122

    Google Scholar 

  • McGuffin P, Festenstein H, Murray RM (1983) A family study of HLA antigens and other genetic markers in schizophrenia. Psychol Med 13:31–43

    Google Scholar 

  • McGuffin P, Sturt E (1986) Genetic markers in schizophrenia. Hum Hered 36:65–88

    Google Scholar 

  • McGuffin P (1988) Genetics of schizophrenia. In: Bebbington P, McGuffin P (eds) Schizophrenia: the major issues. Heinemann Medical. London, pp 107–126

    Google Scholar 

  • McGuffin P, Sargeant M, Hett G, Tidmarsh S, Whatley S, Marchbanks RM (1990) Exclusion of a schizophrenia susceptibility gene from the chromosome 5q11–q13 region. New data and a re-analysis of previous reports. Am J Hum Genet 47:524–535

    Google Scholar 

  • Miyanga K, Machiymaya Y, Juji T (1984) Schizophrenic disorders and HLA-DR antigens. Biol Psychiatry 19:121–129

    Google Scholar 

  • Moises HW, Gelernter J, Grandy DK, Giuffra LA, Kidd JR, Pakstis AJ, Bunzow J, Sjogren B, Wetterberg L, Kennedy JL, Litt M, Civelli O, Kidd KK, Cavalli-Sforza LL (1989) Exclusion of the D2-dopamine receptor gene as candidate gene for schizophrenia in a large pedigree from Sweden. Paper in First World Congress on Psychiatric Genetics, Cambridge

  • Monaco AP, Bertelson CJ, Middlesworth W, Colletti CA (1985) Detection of deletions spanning the Duchenne muscular dystrophy locus using a tightly linked DNA segment. Nature 316:842–845

    Google Scholar 

  • Monaco AP, Neve RL, Colletti-Feeno C, Bertelson CJ, Kurnit D, Kunkel LM (1986) Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323:646–650

    Google Scholar 

  • Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318

    Google Scholar 

  • Morton NE (1982) Outline of genetic epidemiology. Karger, Basel

    Google Scholar 

  • Mourant AE, Kopec AC, Domaniewska-Sobczak K (1975) Blood groups and diseases. Oxford University Press, Oxford

    Google Scholar 

  • Naguib M, McGuffin P, Levy R, Festenstein H, Alonzo A (1987) Genetic markers in late paraphrenia. Br J Psychiatry 150:124–127

    Google Scholar 

  • O'Rourke DH, Gottesman II, Suarez BK, Rice J, Reiche T (1982) Refutation of the single locus model in the aetiology of schizophrenia. Am J Hum Genet 33:630–649

    Google Scholar 

  • Rinieris P, Stefanis C, Lykouras E, Varson E (1982) Subtypes of schizophrenia and ABO blood types. Neuropsychobiology 9:57–59

    Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelezak Z, Zielenski J, Lok S, Plavsic N, Chou J, Drumm ML, Iannuzzi MC, Collins FS, Tsui L (1989) Identification of the cystic fibrosis gene: cloning and characterization of complimentary DNA. Science 245:1066–1073

    Google Scholar 

  • Rudduck C (1985) Genetic markers and schizophrenia. PhD Thesis, University of Lund, Lund, Sweden

    Google Scholar 

  • Sampson JR, Yates JRW, Pirrit LA, Fleury P (1989) Evidence for genetic heterogeneity in tuberous sclerosis. J Med Genet 26:511–516

    Google Scholar 

  • St. Clair D, Blackwood D, Muir W, Baillie D, Hubbard S, Wright A, Evans HJ (1989) No linkage of chromosome 5q11–q13 markers to schizophrenia in Scottish families. Nature 339:305–309

    Google Scholar 

  • St. George-Hyslop P, Tanzi RE, Polinsky RJ, Haines JL, Ree L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D, Growdon J, Bruni A, Foncin J-F, Salmon D, Frommelt P, Amaducci L, Sorbi S, Piacentini S, Stewart GD, Hobbs WJ, Conneally M, Gusella JF (1987) The genetic defect causing familial Alzheimer's Disease maps on chromosome 21. Science 235:885–890

    Google Scholar 

  • Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, Wasmuth J, Dobbs M, Gurling H (1988) Localization of susceptibility locus for schizophrenia on chromosome 5. Nature 336:164–167

    Google Scholar 

  • Smith M, Wasmuth J, MePherson JD, Wagner C, Grandy D, Civelli O, Potkin S, Litt M (1989) Cosegregation of an 11q22 3–9 p22 translocation with affective disorder: proximity of the dopamine D2 receptor gene relative to the translocation breakpoint. Am J Hum Genet 45:A220

    Google Scholar 

  • Sturt E, McGuffin P (1985) Can linkage and marker association resolve the genetic aetiology of psychiatric disorders: Review and argument (editorial). Psychol Med 15:455–462

    Google Scholar 

  • Turner WJ (1979) Genetic markers for schizophrenia. Biol Psychiatr 14:177–205

    Google Scholar 

  • Whatley SA, Owen MJ (1989) Molecular genetics and its application to the study of psychiatric disorders. Int Rev Psychiatry 1:219–230

    Google Scholar 

  • Woolf B (1955) On estimating the relation between blood groups and disease. Ann Hum Genet 19:251–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, M.J., McGuffin, P. DNA-and classical genetic markers in schizophrenia. Eur Arch Psychiatry Clin Nuerosci 240, 197–203 (1991). https://doi.org/10.1007/BF02190764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02190764

Key words

Navigation