Skip to main content
Log in

Spinocerebellar ataxia type 1 in Russia

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 1 (SCA1) is one form of autosomal dominant cerebellar ataxia (ADCA) caused by trinucleotide (CAG) repeat expansion within a mutant gene. We investigated 25 patients from 15 Russian ADCA families for SCA1 mutation and found an expanded CAG repeat in 5 families. Mutant chromosomes contained 41–51 CAG repeats (mean 46.1, SD 3.1), and normal chromosomes displayed 21–27 repeat units (mean 24.7, SD 1.3). Progressive cerebellar ataxia in our series of SCA1 patients was very commonly associated with dysarthria (in all cases) and pyramidal signs (in 10 of 11 cases). In three patients from one family we found optic atrophy, which has never been described before in genetically proven cases of SCA1. We observed no specific clinical features distinguishing SCA1 from non-SCA1 patients. In contrast to the high frequency of SCA1 in our series, we found no patients with Machado-Joseph disease, another form of ADCA caused by expanded CAG repeat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G, Ouhabi H, Martin J-J, Durr A, Zaim A, Ravise N, Busque C, Penet C, Van Regemorter N, Weissenbach J, Yahyaoui M, Chkili T, Agid Y, Van Broeckhoven C, Brice A (1995) The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nature Genet 10: 84–88

    Google Scholar 

  2. Bryer A, Martell RW, duToit ED, Beighton P (1992) Adult onset spinocerebellar ataxia linked to HLA in a large South African kindred of mixed ancestry. Tissue Antigens 40: 111–115

    Google Scholar 

  3. Chung M, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nature Genet 5: 254–258

    Google Scholar 

  4. Dubourg O, Durr A, Cancel G, Stevanin G, Chneiweiss H, Penet C, Agid Y, Brice A (1995) Analysis of the SCA1 CAG repeat in a large number of families with dominant ataxia: clinical and molecular correlations. Ann Neurol 37: 176–180

    Google Scholar 

  5. Durr A, Chneiweiss H, Khati C, Stevanin G, Cancel G, Feingold J, Agid Y, Brice A (1993) Phenotypic variability in autosomal dominant cerebellar ataxia type I is unrelated to genetic heterogeneity. Brain 116: 1497–1508

    Google Scholar 

  6. Gardner K, Alderson K, Galster B, Kaplan C, Leppert M, Ptasek L (1994) Autosomal dominant spinocerebellar ataxia: clinical description of a distinct hereditary ataxia and genetic localization to chromosome 16 (SCA4) in a Utah kindred (abstract). Neurology 44 [Suppl 2]: A361

    Google Scholar 

  7. Genis D, Matilla T, Volpini V, Rosell J, Davalos A, Ferrer I, Molins A, Estivill X (1995) Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology 45: 24–30

    Google Scholar 

  8. Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L, Scheufler K, Riley B, Allotey R, Nothers C, Hillermann R, Lunkes A, Khati C, Stevanin G, Hernandez A, Magarino C, Klockgether T, Durr A, Chneiweiss H, Enczmann J, Farall M, Beckmann J, Mullan M, Wemet P, Agid Y, Freund H-Y, Williamson R, Auburger G, Chamberlain S (1993) Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA-2) to chromosome 12q23-24.1. Nature Genet 4: 295–299

    Google Scholar 

  9. Giunti P, Sweeney MG, Spadaro M, Jodice C, Novelletto A, Malaspina P, Frontali M, Harding AE (1994) The trinucleotide repeat expansion on chromosome 6p (SCA1) in autosomal dominant cerebellar ataxias. Brain 117: 645–649

    Google Scholar 

  10. Goldfarb LG, Chumakov MP, Petrov PA, Fedorova NI, Gajdusek DC (1989) Olivopontocerebellar atrophy in a large Iakut kinship in eastern Siberia. Neurology 39: 1527–1530

    Google Scholar 

  11. Haberhausen G, Damian MS, Leweke F, Müller U (1995) Spinocerebellar ataxia, type 3 (SCA3) is genetically identical to Machado-Joseph disease (MJD). J Neurol Sci 132: 71–75

    Google Scholar 

  12. Harding AE (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias: a study of 11 families, including descendants of the “Drew family of Walworth”. Brain 105: 1–28

    Google Scholar 

  13. Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61: 1–14

    Google Scholar 

  14. Jackson JF, Currier RD, Terasaki PI, Morton NE (1977) Spinocerebellar ataxia and HLA linkage: risk prediction by HLA typing. N Engl J Med 296: 1138–1141

    Google Scholar 

  15. Jodice C, Malaspina P, Persichetti F, Noveletto A, Spadaro M, Giunti P, Morocutti C, Terrenato L, Harding AE, Frontali M (1994) Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia 1. Am J Hum Genet 54: 959–965

    Google Scholar 

  16. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A (1994) CAG expansions in a novel gene from Machado-Joseph disease at chromosome 14q32.1. Nature Genet 8: 221–228

    Google Scholar 

  17. Khati C, Stevanin G, Durr A, Chneiweiss H, Belal S, Seek A, Cann H, Brice A, Agid Y (1993) Genetic heterogeneity of autosomal dominant cerebellar ataxia type 1: clinical and genetic analysis of 10 French families. Neurology 43: 1131–1137

    Google Scholar 

  18. Matilla T, Volpini V, Genis D, Rosell J, Corral J, Davalos A, Molins A, Estivill X (1993) Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum Mol Genet 2: 2123–2128

    Google Scholar 

  19. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16: 1215

    Google Scholar 

  20. Orr HT, Chung M, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet 4: 221–226

    Google Scholar 

  21. Ranum LP, Chung M, Banfi S, Bryer A, Schut LJ, Ramesar R, Duvick LA, McCall A, Subramony SH, Goldfarb L, Gomez C, Sandkuijl LA, Orr HT, Zoghbi HY (1994) Molecular and clinical correlations in spinocerebellar ataxia type 1: evidence for familial effects on the age at onset. Am J Hum Genet 55: 244–252

    Google Scholar 

  22. Ranum LP, Schut LJ, Lundgren JK, Orr HT, Livingston DM (1994) Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nature Genet 8: 280–284

    Google Scholar 

  23. Rich SS, Wilkie P, Schut L, Vance G, Orr HT (1987) Spinocerebellar ataxia: localization of an autosomal dominant locus between two markers on human chromosome 6. Am J Hum Genet 41: 524–531

    Google Scholar 

  24. Rosenberg RN (1995) Autosomal dominant cerebellar phenotypes: the genotype has settled the issue. Neurology 45: 1–5

    Google Scholar 

  25. Stevanin G, LeGuern E, Ravise N, Chneiweiss H, Durr A, Cancel G, Vignal A, Boch A-L, Ruberg M, Penet C, Pothin Y, Lagroua I, Haguenau M, Rancurel G, Weissenbach J, Agid Y, Brice A (1994) A third locus for autosomal dominant cerebellar ataxia type 1 maps to chromosome 14q24.3-qter: evidence for the existence of a fourth locus. Am J Hum Genet 54: 11–20

    Google Scholar 

  26. Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, Shimazaki H, Soutome M, Endo K, Ohta S, Kagawa Y, Kanazawa I, Mizuno Y, Yoshida M, Yuasa T, Horikawa Y, Oyanagi K, Nagai H, Kondo T, Inuzuka T, Onodera O, Tsuji S (1993) The gene for Machado-Joseph disease maps to human chromosome 14q. Nature Genet 4: 300–304

    Google Scholar 

  27. World Federation of Neurology: Research Committee. Research Group on Huntington's disease (1989) Ethical issues policy statement on Huntington's disease molecular genetics predictive tests. J Neurol Sci 94: 327–32

    Google Scholar 

  28. Zoghbi HY, Pollack MS, Lyons LA, Ferrell RE, Daiger SP, Beaudet AL (1988) Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann Neurol 23: 580–584

    Google Scholar 

  29. Zoghbi HY, Jodice C, Sandkuijl LA, Kwiatkowski TJ, McCall AE, Huntoon SA, Lulli P, Spadaro M, Litt M, Cann HM, Frontali M, Terrenato L (1991) The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps telomeric to the HLA complex and is closely linked to the D6S89 locus in three large kindreds. Am J Hum Genet 49: 23–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illarioshkin, S.N., Slominsky, P.A., Ovchinnikov, I.V. et al. Spinocerebellar ataxia type 1 in Russia. J Neurol 243, 506–510 (1996). https://doi.org/10.1007/BF00886871

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00886871

Key words

Navigation