Skip to main content
Log in

Determination of ampicillin in New Zealand white rabbit plasma using column switching technique and HPLC

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The purpose of this study was to develop a simple and fast analytical method for quantitation of ampicillin in rabbit plasma, suitable for analysis of large numbers of samples collected from experimental animals. The concentration of ampicillin in rabbit plasma was determined utilizing ion-pair reverse-phase high performance liquid chromatography (HPLC) with UV detection and a column switching technique. Plasma samples were treated with a perchloric acid solution to precipitate proteins and centrifuged to pellet the precipitated proteins. Cephalexin was used as an internal standard. The C18 precolumn was placed in the injector loop of the Rheodyne injector. Samples were injected with the injector in the load position and the precolumn was washed free from interfering compounds. When the injector was switched to the inject position, the mobile phase was passed through the precolumn taking relatively pure compounds onto the analytical column. The limit of quantitation was established to be 400 ng mL−1 of plasma. The standard curves were linear over the range of ampicillin concentrations assayed, 400 to 10,000 ng mL−1 of rabbit plasma, and had a mean regression coefficient of 0.9962 (±0.0043). Intra-day variability was determined using six replicates of controls (low and high) analyzed on a single assay. The percent of relative accuracy for low and high controls were 5.67 and 1.12, respectively. Inter-day variability was determined over a four day period analyzing replicates of each control. The percent of relative accuracy for low and high controls were 4.33 and 1.63, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Bloom, R. K. Kohli, N. J. Harrison, J. J. Schentag, Antimicrob. Angets. Chemother.33, 1470 (1989).

    Google Scholar 

  2. J. Haginaka, J. Wakai, H. Yasuda, T. Uno, K. Takahashi, T. Katagi, J. Chromatogr.400, 101 (1987).

    Article  PubMed  Google Scholar 

  3. S. Suwanrumpha, R. B. Freas, Biomed. Environ. Mass Spectrom.18, 983 (1989).

    Article  PubMed  Google Scholar 

  4. Y. Akimoto, K. Kaneko, A. Fujii, H. Yamamoto, J. Oral Maxillofac. Surg.50, 11 (1992).

    PubMed  Google Scholar 

  5. U. Meetschen, M. Petz, J. Assoc. Off. Anal. Chem.73, 373 (1990).

    PubMed  Google Scholar 

  6. A. O. Akanni, J. S. K. Ayim, J. Pharmac. Biomed. Anal.10, 43 (1992).

    Google Scholar 

  7. A. Marzo, N. Monti, M. Ripamonti, E. Arrigoni Martelli, M. Picari, J. Chromatogr.507, 235 (1990).

    Article  PubMed  Google Scholar 

  8. M. J. Akhtar, S. Khan, M. A. S. Khan, J. Pharmac. Biomed. Anal.11, 375 (1993).

    Article  Google Scholar 

  9. H. J. Nelis, J. Vandenbranden, B. Verhaeghe, A. De Kruif, D. Mattheeuws, P. De Leenheer, Antimicrob. Agents. Chemother.36, 1606 (1992).

    PubMed  Google Scholar 

  10. T. B. Vree, Y. A. Hekster, A. M. Baars, E. Van Der Kleijn, J. Chromatogr.145, 496 (1978).

    PubMed  Google Scholar 

  11. J. Haginaka, J. Wakai, Analyst110, 1277 (1985).

    Article  PubMed  Google Scholar 

  12. B. R. Meyers, P. Wilkinson, M. H. Mendelson, S. Walsh, C. Bournazos, S. Z. Hirschman, Antimicrob. Agents. Chemother.35, 2098 (1991).

    PubMed  Google Scholar 

  13. K. Lundbeck-Vallen, J. Carlqvist, T. Nordgren, J. Chromatogr. Biomed. Appl.567, 121 (1991).

    Article  Google Scholar 

  14. K. Miyazaki, K. Ohtani, K. Sunada, T. Arita, J. Chromatogr. Biomed. Appl.276, 478 (1983).

    Article  Google Scholar 

  15. J. P. Rho, A. Jones, M. Woo, S. Castle, K. Smith, R. E. Bawdon, D. C. Norman, J. Antimicrob. Chemother.24, 573 (1989).

    PubMed  Google Scholar 

  16. T. Nakagawa, A. Shibukawa, T. Uno, J. Chromatogr.239, 695 (1982).

    Article  Google Scholar 

  17. F. Nachtmann, K. Gstrein, Int. J. Pharmac.7, 55 (1980).

    Article  Google Scholar 

  18. K. Tsuji, J. H. Robertson, J. Pharmac. Sci.64, 1542 (1975).

    Google Scholar 

  19. M. A. Sheikh Salem, H. N. Alkaysi, Drug Devel. Industr. Pharm.13, 2771 (1987).

    Google Scholar 

  20. R. F. Straub, R. D. Voyksner, J. Chromatogr.647, 167 (1993).

    Article  PubMed  Google Scholar 

  21. J. M. Anderson, S. W. Kim, “Recent Advantages in Drug Delivery Systems”, Plenum Press, New York and London, 1984, p. 185.

    Google Scholar 

  22. I. R. Tebbett, A. Negrusz, A. K. Larsen Jr., R. C. Jensen, Chromatographia34, 143 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolhurst, T.A., Negrusz, A., Libelt, B. et al. Determination of ampicillin in New Zealand white rabbit plasma using column switching technique and HPLC. Chromatographia 42, 223–226 (1996). https://doi.org/10.1007/BF02269657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02269657

Key Words

Navigation