Download citation
Download citation
link to html
In the title compound, [Cu(C20H34N6)](ClO4)2, the CuII atom is coordinated to the five ligand donor N atoms of the pendant-arm macrocyclic ligand. The coordination sphere geometry can be described as either distorted square-pyramidal or distorted trigonal-prismatic.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011540/cv6040sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011540/cv6040Isup2.hkl
Contains datablock I

CCDC reference: 170869

Key indicators

  • Single-crystal X-ray study
  • T = 213 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.054
  • wR factor = 0.165
  • Data-to-parameter ratio = 9.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
THETM_01 Alert B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5621
Author response: Instrument restriction. Please see _exptl_special_details and _diffrn_measurement_device_details for a full explanation.

Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.382 0.483 Tmin and Tmax expected: 0.340 0.483 RR = 1.124 Please check that your absorption correction is appropriate. REFNR_01 Alert C Ratio of reflections to parameters is < 10 for a centrosymmetric structure sine(theta)/lambda 0.5621 Proportion of unique data used 0.8535 Ratio reflections to parameters 9.7695
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Galactose oxidase is a non-blue copper-dependent oxidase isolated from Dactylium dendroides (Ogel et al., 1994) and structurally characterized (Ito et al., 1992). This enzyme achieves the stereo selective oxidation of primary alcohols, such as D-galactose. There has been some interest in the potential utility of this enzyme as a biosensor (Hasebe & Uchiyama, 2000). Extensive spectroscopic investigations have probed the mechanism of catalysis indicating a pH dependence of the redox reaction providing evidence for a phenolic amino acid residue initiating the catalytic cycle by abstraction of an H atom from a neighbouring group (Reynolds et al., 1997).

Recently, this enzyme has attracted our interest and we have prepared structural model complexes (Daly & Martin, 2001) containing the square-based pyramidal geometry about the CuII ion, as observed in the native enzyme. Unfortunately, we were unable to structurally characterize the ligand containing the phenol moiety in the solid state; however, the title complex is the N-methyl derivative coordinated to a CuII ion.

If the coordination of CuII is described as distorted square-pyramidal the N1, N3, N4 and N5 atoms would constitute the base plane and N2, which has the longest bond to CuII (Table 1), is the apical atom. Deviations from the least-squares plane through N1, N3, N4 and N5 are 0.191 (4), -0.262 (5), -0.226 (4) and 0.200 (4) Å, respectively, so that there is a significant tetrahedral distortion from planarity. Cu and N2 are 0.381 (1) and 2.350 (4) Å from this plane. This pentadentate ligand coordinates in a different conformation in the octahedral Ni complex (Daly et al., 2001) which has acetonitrile as the sixth ligand. There, N2, N3, N4 and N5 are in a square plane, with N1 at the apex.

An alternative trigonal-bipyramidal description arises from considering N2, N3 and N4 as the trianglar entity. In this description, N1, N5 and Cu are 1.842 (3), -2.101 (4) and -0.180 (1) Å, respectively, from this equatorial plane.

Experimental top

To a refluxing solution of the ligand (0.639 g, 1.78 mmol) in 1:1 water/ethanol (10 ml) mixture was added dropwise an aqueous solution of copper perchlorate hexahydrate (0.661 g, 1.78 mmol, 5 ml). The mixture, now a deep blue colour, was heated for a further 5 min then acetonitrile (\sim1 ml) was added and the solution allowed to cool. The dark blue crystals that formed, after further cooling (in refrigerator) were collected by filtration, washed with a small amount of water then ethanol prior to being air dried. Yield = 0.50 g (45%). λmaxCH3CN, 648 nm, ε = 311.51 M-1 cm-1, µ = 2.13 B·M. at 18°C. Microanalysis for C20H34Cl2N6CuO8, calculated: C 38.68, H 5.52, N 13.53; found: C 38.55, H 5.34, N 13.42.

Suitable crystals of the complex were grown by slow evaporation of a solution of the complex in \sim5% acetonitrile/water mixture.

Refinement top

There is a peak of 1.195 e Å-3 0.94 Å from Cl1.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control; data reduction: TEXSAN (Molecular Structure Corporation, 1992-1997); program(s) used to solve structure: PATTYy in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: Xtal3.4 CRYLSQ (Hall et al., 1995); molecular graphics: Xtal3.4 PIG ORTEP; software used to prepare material for publication: Xtal3.4 BONDLA CIFIO.

Figures top
[Figure 1] Fig. 1. The complex cation of the title compound with displacement ellipsoids at the 50% probability level.
(I) top
Crystal data top
[Cu(C20H34N6)](ClO4)2Dx = 1.607 Mg m3
Mr = 620.98Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 12.978 (2) Åθ = 48.6–49.8°
b = 16.518 (2) ŵ = 3.64 mm1
c = 23.950 (4) ÅT = 213 K
V = 5134 (1) Å3Irregular, blue
Z = 80.40 × 0.28 × 0.20 mm
F(000) = 2584.00
Data collection top
Rigaku AFC-6R
diffractometer
3263 reflections with F2 > 1.5σ(F2)
Radiation source: Rigaku rotating anodeRint = 0
Graphite monochromatorθmax = 60.1°, θmin = 1.9°
ω–2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.382, Tmax = 0.483l = 026
4291 measured reflections3 standard reflections every 150 reflections
3823 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2334 parameters
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.1Fo2)2]
wR(F2) = 0.165(Δ/σ)max = 0.0003
S = 1.38Δρmax = 1.20 e Å3
3263 reflectionsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C20H34N6)](ClO4)2V = 5134 (1) Å3
Mr = 620.98Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 12.978 (2) ŵ = 3.64 mm1
b = 16.518 (2) ÅT = 213 K
c = 23.950 (4) Å0.40 × 0.28 × 0.20 mm
Data collection top
Rigaku AFC-6R
diffractometer
3263 reflections with F2 > 1.5σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0
Tmin = 0.382, Tmax = 0.483θmax = 60.1°
4291 measured reflections3 standard reflections every 150 reflections
3823 independent reflections intensity decay: 0.5%
Refinement top
R[F2 > 2σ(F2)] = 0.054334 parameters
wR(F2) = 0.165H-atom parameters not refined
S = 1.38Δρmax = 1.20 e Å3
3263 reflectionsΔρmin = 0.55 e Å3
Special details top

Experimental. The scan width was (1.20 + 0.30tanθ)° with an ω scan speed of 32° per minute (up to 5 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1. Data can only be collected to 2θ 120° on a AFC6R diffractometer when the evacuated beam tunnel in used. Mass attenuation coefficients for absorption from International Tables for X-ray Crystallography, Vol IV (1974) Table 2.1 C.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.16186 (4)0.00140 (3)0.12678 (2)0.0211 (4)
Cl10.35065 (8)0.04176 (8)0.11549 (5)0.0423 (7)
Cl20.41164 (8)0.28659 (6)0.27905 (5)0.0400 (6)
O110.4288 (3)0.0894 (3)0.14298 (19)0.075 (3)
O120.2791 (4)0.0166 (3)0.1562 (2)0.093 (4)
O130.2996 (3)0.0904 (3)0.07510 (17)0.075 (3)
O140.3983 (3)0.0255 (3)0.0899 (2)0.084 (3)
O210.3395 (4)0.2251 (3)0.2759 (2)0.089 (3)
O220.3669 (3)0.3631 (2)0.26532 (18)0.069 (3)
O230.4516 (5)0.2871 (3)0.3334 (2)0.111 (4)
O240.4930 (6)0.2724 (4)0.2432 (3)0.157 (6)
N10.2295 (2)0.07895 (18)0.17890 (13)0.0236 (16)
N20.2440 (3)0.06738 (18)0.06230 (13)0.0264 (17)
N30.3004 (3)0.06548 (19)0.13277 (14)0.0257 (17)
N40.0271 (2)0.0265 (2)0.16738 (13)0.0244 (17)
N50.0712 (2)0.0849 (2)0.09150 (13)0.0251 (17)
N60.0604 (3)0.1683 (2)0.10945 (15)0.034 (2)
C10.2911 (3)0.1401 (2)0.14838 (17)0.030 (2)
C20.2521 (3)0.1478 (2)0.08901 (17)0.032 (2)
C30.3473 (3)0.0299 (3)0.05528 (18)0.033 (2)
C40.3502 (3)0.0574 (2)0.07673 (18)0.030 (2)
C50.3632 (3)0.0265 (3)0.17784 (18)0.031 (2)
C60.2951 (3)0.0253 (3)0.21475 (16)0.028 (2)
C70.1896 (4)0.0746 (3)0.00866 (18)0.039 (2)
C80.2860 (4)0.1529 (2)0.1457 (2)0.038 (2)
C90.1466 (3)0.1196 (3)0.21298 (18)0.030 (2)
C100.0581 (3)0.0623 (3)0.22223 (16)0.030 (2)
C110.0309 (3)0.0496 (3)0.17436 (17)0.031 (2)
C120.0075 (3)0.1007 (2)0.12460 (15)0.026 (2)
C130.0110 (3)0.1981 (2)0.06251 (17)0.031 (2)
C140.0341 (4)0.2651 (3)0.0287 (2)0.044 (3)
C150.0285 (4)0.2757 (3)0.0175 (2)0.046 (3)
C160.1090 (4)0.2229 (3)0.0310 (2)0.040 (3)
C170.1307 (3)0.1568 (3)0.00347 (17)0.031 (2)
C180.0696 (3)0.1458 (2)0.05065 (16)0.026 (2)
C190.1509 (4)0.2018 (3)0.1377 (2)0.048 (3)
C200.0322 (4)0.0844 (3)0.1331 (2)0.038 (3)
H1a0.286000.190900.166800.03700*
H1b0.361600.123400.148000.03700*
H2a0.186500.172900.089400.03900*
H2b0.299000.180300.068200.03900*
H3a0.396500.060900.075100.04100*
H3b0.364200.029600.016600.04100*
H4a0.420100.073800.079700.03800*
H4b0.315200.091100.051000.03800*
H5a0.415000.006600.161100.03700*
H5b0.395700.067300.199700.03700*
H6a0.336100.057500.238700.03500*
H6b0.251600.008900.236700.03500*
H7a0.226300.109800.015500.04800*
H7b0.183900.022600.008400.04800*
H7c0.122000.095700.014600.04800*
H8a0.350500.178900.147100.04600*
H8b0.244400.176900.117300.04600*
H8c0.251800.158000.180700.04600*
H9a0.174100.135500.248000.03800*
H9b0.122200.166000.193600.03800*
H10a0.079000.020200.247100.03700*
H10b0.001500.090600.238100.03700*
H11a0.011000.076200.207600.03700*
H11b0.103300.038200.175900.03700*
H140.088200.301500.037500.05200*
H150.015400.320200.041900.05500*
H160.148900.231600.063300.04800*
H170.185700.120600.005000.03800*
H19a0.133000.214900.175300.06000*
H19b0.204400.162900.137600.06000*
H19c0.172500.249300.118900.06000*
H20a0.006500.132700.128400.04600*
H20b0.046200.061200.097500.04600*
H20c0.095600.096600.151200.04600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0232 (4)0.0214 (4)0.0187 (4)0.0018 (2)0.0002 (2)0.0030 (2)
Cl10.0364 (6)0.0650 (8)0.0257 (6)0.0084 (5)0.0014 (4)0.0081 (5)
Cl20.0421 (6)0.0358 (6)0.0420 (7)0.0039 (4)0.0007 (5)0.0065 (5)
O110.060 (2)0.090 (3)0.074 (3)0.011 (2)0.022 (2)0.015 (3)
O120.068 (3)0.133 (4)0.078 (3)0.001 (3)0.028 (3)0.042 (3)
O130.083 (3)0.073 (3)0.069 (3)0.017 (2)0.044 (2)0.037 (2)
O140.066 (3)0.108 (4)0.078 (3)0.026 (3)0.007 (2)0.038 (3)
O210.091 (3)0.061 (3)0.116 (4)0.026 (2)0.033 (3)0.001 (3)
O220.084 (3)0.050 (2)0.071 (3)0.025 (2)0.002 (2)0.013 (2)
O230.164 (5)0.076 (3)0.093 (4)0.029 (3)0.076 (4)0.023 (3)
O240.156 (5)0.120 (4)0.195 (7)0.077 (4)0.127 (5)0.075 (5)
N10.0263 (17)0.0227 (15)0.0217 (17)0.0001 (13)0.0008 (14)0.0035 (13)
N20.0370 (18)0.0215 (16)0.0206 (16)0.0005 (14)0.0009 (14)0.0015 (13)
N30.0275 (17)0.0229 (17)0.0269 (18)0.0029 (14)0.0004 (14)0.0003 (13)
N40.0240 (17)0.0268 (16)0.0222 (17)0.0008 (14)0.0026 (13)0.0030 (14)
N50.0276 (17)0.0248 (16)0.0230 (17)0.0049 (13)0.0012 (14)0.0039 (14)
N60.036 (2)0.035 (2)0.0319 (19)0.0102 (16)0.0046 (16)0.0009 (16)
C10.040 (2)0.0203 (19)0.029 (2)0.0029 (17)0.0011 (19)0.0024 (17)
C20.041 (2)0.022 (2)0.032 (2)0.0028 (17)0.0041 (19)0.0001 (17)
C30.031 (2)0.042 (2)0.028 (2)0.0096 (19)0.0078 (17)0.001 (2)
C40.031 (2)0.029 (2)0.031 (2)0.0028 (16)0.0008 (17)0.0104 (18)
C50.028 (2)0.033 (2)0.032 (2)0.0033 (18)0.0108 (18)0.0035 (19)
C60.028 (2)0.034 (2)0.023 (2)0.0023 (18)0.0048 (16)0.0012 (18)
C70.060 (3)0.035 (2)0.024 (2)0.000 (2)0.006 (2)0.0064 (18)
C80.045 (3)0.023 (2)0.046 (3)0.0011 (18)0.008 (2)0.004 (2)
C90.032 (2)0.032 (2)0.027 (2)0.0000 (17)0.0011 (17)0.0103 (18)
C100.030 (2)0.038 (2)0.023 (2)0.0020 (17)0.0041 (17)0.0085 (17)
C110.026 (2)0.039 (2)0.026 (2)0.0088 (18)0.0083 (17)0.0008 (18)
C120.025 (2)0.030 (2)0.025 (2)0.0043 (17)0.0043 (16)0.0028 (17)
C130.037 (2)0.030 (2)0.025 (2)0.0051 (17)0.0034 (18)0.0034 (18)
C140.049 (3)0.039 (3)0.044 (3)0.011 (2)0.006 (2)0.005 (2)
C150.066 (3)0.032 (2)0.041 (3)0.008 (2)0.016 (2)0.015 (2)
C160.049 (3)0.040 (3)0.030 (2)0.003 (2)0.009 (2)0.009 (2)
C170.038 (2)0.031 (2)0.025 (2)0.0015 (18)0.0046 (18)0.0057 (18)
C180.035 (2)0.024 (2)0.019 (2)0.0006 (17)0.0072 (17)0.0023 (16)
C190.041 (3)0.056 (3)0.047 (3)0.023 (2)0.007 (2)0.004 (3)
C200.039 (3)0.035 (2)0.039 (3)0.008 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu—N12.022 (3)C4—H4a0.950
Cu—N22.194 (3)C4—H4b0.946
Cu—N32.091 (3)C5—C61.515 (6)
Cu—N42.053 (3)C5—H5a0.955
Cu—N52.000 (3)C5—H5b0.952
Cl1—O111.443 (5)C6—H6a0.946
Cl1—O121.409 (5)C6—H6b0.956
Cl1—O131.421 (4)C7—H7a0.948
Cl1—O141.411 (5)C7—H7b0.954
Cl2—O211.383 (5)C7—H7c0.955
Cl2—O221.428 (4)C8—H8a0.942
Cl2—O231.401 (6)C8—H8b0.955
Cl2—O241.381 (8)C8—H8c0.952
N1—C11.481 (5)C9—C101.504 (6)
N1—C61.499 (5)C9—H9a0.949
N1—C91.508 (5)C9—H9b0.950
N2—C21.479 (5)C10—H10a0.955
N2—C31.486 (5)C10—H10b0.950
N2—C71.470 (6)C11—C121.492 (6)
N3—C41.496 (5)C11—H11a0.946
N3—C51.498 (5)C11—H11b0.958
N3—C81.488 (5)C13—C141.404 (6)
N4—C101.496 (5)C13—C181.386 (6)
N4—C111.475 (5)C14—C151.383 (7)
N4—C201.477 (6)C14—H140.948
N5—C121.319 (5)C15—C161.399 (7)
N5—C181.403 (5)C15—H150.955
N6—C121.359 (5)C16—C171.398 (6)
N6—C131.384 (5)C16—H160.942
N6—C191.464 (6)C17—C181.392 (6)
C1—C21.515 (6)C17—H170.952
C1—H1a0.951C19—H19a0.955
C1—H1b0.955C19—H19b0.946
C2—H2a0.946C19—H19c0.947
C2—H2b0.952C20—H20a0.949
C3—C41.532 (6)C20—H20b0.952
C3—H3a0.946C20—H20c0.951
C3—H3b0.952
N1—Cu—N283.33 (12)N3—C5—C6110.3 (3)
N1—Cu—N385.23 (13)N3—C5—H5a109.1
N1—Cu—N485.97 (13)N3—C5—H5b109.5
N1—Cu—N5165.60 (13)C6—C5—H5a109.3
N2—Cu—N383.84 (12)C6—C5—H5b109.7
N2—Cu—N4129.11 (12)H5a—C5—H5b108.9
N2—Cu—N5110.22 (12)N1—C6—C5109.3 (3)
N3—Cu—N4144.42 (13)N1—C6—H6a109.6
N3—Cu—N5100.68 (13)N1—C6—H6b109.2
N4—Cu—N581.62 (13)C5—C6—H6a110.1
O11—Cl1—O12107.9 (3)C5—C6—H6b109.3
O11—Cl1—O13109.2 (3)H6a—C6—H6b109.3
O11—Cl1—O14108.6 (3)N2—C7—H7a110.0
O12—Cl1—O13109.3 (3)N2—C7—H7b109.8
O12—Cl1—O14110.9 (3)N2—C7—H7c109.9
O13—Cl1—O14110.7 (3)H7a—C7—H7b109.3
O21—Cl2—O22111.2 (3)H7a—C7—H7c109.2
O21—Cl2—O23107.8 (3)H7b—C7—H7c108.7
O21—Cl2—O24111.0 (3)N3—C8—H8a109.8
O22—Cl2—O23111.1 (3)N3—C8—H8b109.0
O22—Cl2—O24108.5 (3)N3—C8—H8c109.2
O23—Cl2—O24107.2 (4)H8a—C8—H8b109.7
Cu—N1—C1112.2 (2)H8a—C8—H8c110.0
Cu—N1—C6102.3 (2)H8b—C8—H8c109.1
Cu—N1—C9108.5 (2)N1—C9—C10110.1 (3)
C1—N1—C6112.2 (3)N1—C9—H9a109.5
C1—N1—C9110.4 (3)N1—C9—H9b109.4
C6—N1—C9111.0 (3)C10—C9—H9a109.4
Cu—N2—C2101.3 (2)C10—C9—H9b109.0
Cu—N2—C3107.6 (2)H9a—C9—H9b109.5
Cu—N2—C7115.1 (3)N4—C10—C9108.9 (3)
C2—N2—C3111.0 (3)N4—C10—H10a109.6
C2—N2—C7109.8 (3)N4—C10—H10b109.8
C3—N2—C7111.6 (3)C9—C10—H10a109.5
Cu—N3—C4105.4 (2)C9—C10—H10b109.9
Cu—N3—C5107.4 (2)H10a—C10—H10b109.2
Cu—N3—C8113.4 (3)N4—C11—C12106.7 (3)
C4—N3—C5111.9 (3)N4—C11—H11a110.6
C4—N3—C8109.1 (3)N4—C11—H11b109.8
C5—N3—C8109.6 (3)C12—C11—H11a110.7
Cu—N4—C10106.0 (2)C12—C11—H11b110.0
Cu—N4—C11107.3 (2)H11a—C11—H11b109.1
Cu—N4—C20109.0 (3)N5—C12—N6113.2 (3)
C10—N4—C11112.0 (3)N5—C12—C11121.7 (4)
C10—N4—C20111.9 (3)N6—C12—C11125.1 (4)
C11—N4—C20110.4 (3)N6—C13—C14130.5 (4)
Cu—N5—C12109.8 (3)N6—C13—C18107.1 (3)
Cu—N5—C18142.9 (3)C14—C13—C18122.3 (4)
C12—N5—C18105.4 (3)C13—C14—C15115.8 (4)
C12—N6—C13105.9 (3)C13—C14—H14122.0
C12—N6—C19126.3 (4)C15—C14—H14122.2
C13—N6—C19127.7 (4)C14—C15—C16123.0 (4)
N1—C1—C2109.9 (3)C14—C15—H15118.9
N1—C1—H1a109.6C16—C15—H15118.1
N1—C1—H1b109.0C15—C16—C17120.1 (4)
C2—C1—H1a109.7C15—C16—H16120.4
C2—C1—H1b109.6C17—C16—H16119.5
H1a—C1—H1b109.0C16—C17—C18117.8 (4)
N2—C2—C1110.7 (3)C16—C17—H17121.0
N2—C2—H2a109.5C18—C17—H17121.2
N2—C2—H2b109.0N5—C18—C13108.3 (3)
C1—C2—H2a109.2N5—C18—C17130.6 (4)
C1—C2—H2b109.0C13—C18—C17121.0 (4)
H2a—C2—H2b109.5N6—C19—H19a109.0
N2—C3—C4112.1 (3)N6—C19—H19b109.3
N2—C3—H3a109.1N6—C19—H19c109.3
N2—C3—H3b108.7H19a—C19—H19b109.6
C4—C3—H3a108.9H19a—C19—H19c109.4
C4—C3—H3b108.4H19b—C19—H19c110.1
H3a—C3—H3b109.6N4—C20—H20a109.5
N3—C4—C3112.0 (3)N4—C20—H20b109.7
N3—C4—H4a108.7N4—C20—H20c109.6
N3—C4—H4b109.0H20a—C20—H20b109.4
C3—C4—H4a108.5H20a—C20—H20c109.5
C3—C4—H4b108.9H20b—C20—H20c109.2
H4a—C4—H4b109.9

Experimental details

Crystal data
Chemical formula[Cu(C20H34N6)](ClO4)2
Mr620.98
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)213
a, b, c (Å)12.978 (2), 16.518 (2), 23.950 (4)
V3)5134 (1)
Z8
Radiation typeCu Kα
µ (mm1)3.64
Crystal size (mm)0.40 × 0.28 × 0.20
Data collection
DiffractometerRigaku AFC-6R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.382, 0.483
No. of measured, independent and
observed [F2 > 1.5σ(F2)] reflections
4291, 3823, 3263
Rint0
θmax (°)60.1
(sin θ/λ)max1)0.562
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.165, 1.38
No. of reflections3263
No. of parameters334
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.20, 0.55

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control, TEXSAN (Molecular Structure Corporation, 1992-1997), PATTYy in DIRDIF92 (Beurskens et al., 1992), Xtal3.4 CRYLSQ (Hall et al., 1995), Xtal3.4 PIG ORTEP, Xtal3.4 BONDLA CIFIO.

Selected geometric parameters (Å, º) top
Cu—N12.022 (3)Cu—N42.053 (3)
Cu—N22.194 (3)Cu—N52.000 (3)
Cu—N32.091 (3)
N1—Cu—N283.33 (12)N2—Cu—N4129.11 (12)
N1—Cu—N385.23 (13)N2—Cu—N5110.22 (12)
N1—Cu—N485.97 (13)N3—Cu—N4144.42 (13)
N1—Cu—N5165.60 (13)N3—Cu—N5100.68 (13)
N2—Cu—N383.84 (12)N4—Cu—N581.62 (13)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds