Elsevier

Surface Science

Volumes 269–270, 15 May 1992, Pages 235-246
Surface Science

Photodissociation and photodesorption of O2 adsorbed on Pd(111)

https://doi.org/10.1016/0039-6028(92)91256-BGet rights and content

Abstract

The dynamics of the UV-photochemistry of molecularly adsorbed oxygen on Pd(111) has been studied using pulsed laser light between 3.9 and 6.4 eV photon energy. Photodissociation to form atomic surface oxygen and photodesorption of O2 are the primary processes. The latter is characterized by a translational energy of about 800 K indicating non-thermal desorption. Since the photolytically formed atomic oxygen competes with the molecular adsorbate for binding sites some of the latter is displaced. This manifests itself in a conversion process between adsorbate states and in a desorption channel with a translational energy of 120 K indicating accommodation to the surface temperature. The cross sections for all processes rise exponentially from 3.9 to 6.4 eV by a factor of 38.

References (56)

  • T.J. Chuang

    Surf. Sci. Rep.

    (1983)
  • X.L. Zhou et al.

    Surf. Sci. Rep.

    (1991)
  • J.R. Swanson et al.

    Surf. Sci.

    (1990)
  • M.E.M. Spruit et al.

    Surf. Sci.

    (1989)
  • M. Wolf et al.

    Surf. Sci.

    (1991)
  • T. Matsushima

    Surf. Sci.

    (1985)
  • R. Imbihl et al.

    Surf. Sci.

    (1986)
  • C. Backx et al.

    Surf. Sci.

    (1981)
  • C. Nyberg et al.

    Surf. Sci.

    (1983)
  • K. Prabhakaran et al.

    Surf. Sci.

    (1986)
  • J.L. Gland et al.

    Surf. Sci.

    (1980)
  • H. Steininger et al.

    Surf. Sci.

    (1982)
  • N.D. Shinn et al.

    Surf. Sci.

    (1986)
  • I. Panas et al.

    Chem. Phys. Lett.

    (1988)
  • X.-Y. Zhu et al.

    Chem. Phys. Lett.

    (1991)
  • W. Ho
  • P. Avouris et al.

    Annu. Rev. Phys. Chem.

    (1989)
  • E.B.D. Bourdon et al.

    J. Phys. Chem.

    (1984)
  • S.A. Costello et al.

    J. Phys. Chem.

    (1988)
  • J.R. Creighton

    J. Appl. Phys.

    (1986)
  • Z. Ying et al.

    Phys. Rev. Lett.

    (1988)
  • B. Roop et al.

    J. Chem. Phys.

    (1989)
  • X. Guo et al.

    J. Chem. Phys.

    (1989)
  • K. Domen et al.

    Phys. Rev. Lett.

    (1987)
  • F. Budde et al.

    Phys. Rev. Lett.

    (1988)
  • E.P. Marsh et al.

    Phys. Rev. Lett.

    (1988)
  • S.A. Buntin et al.

    J. Chem. Phys.

    (1989)
  • M. Kawasaki et al.

    J. Appl. Phys.

    (1989)
  • Cited by (37)

    • Pd nanoparticle-mediated acetone sensing performance improvement of SnO<inf>2</inf> substrate: A combined DFT and experimental study

      2022, Current Applied Physics
      Citation Excerpt :

      Bands peaking at 1012, 1036, 1070, 1096, and 1164 cm−1 can be ascribed to the stretching frequencies of superoxo (O2−)-like surface species [90,92,93]. Raman peaks at 652, 680, 726, 822, and 880 cm−1 correspond to the O–O stretching vibrational frequencies of different peroxo (O22−) adspecies on Pd NP surfaces [92–94]. Higher Raman intensity of several surface oxygen species on the Pd/SnO2 substrate than the pristine SnO2 shows enhanced oxygen adsorptions after loading of Pd NPs, which can produce improved sensor response.

    • The dynamics of making and breaking bonds at surfaces

      2008, Chemical Bonding at Surfaces and Interfaces
    View all citing articles on Scopus
    1

    Permanent address: NEC Corporation, Microelectronics Research Laboratories, 34 Miyukigaoka, Tsukuba 305, Japan.

    2

    Present address: Department of Chemistry, University of Texas, Austin, TX 78712, USA.

    View full text