Elsevier

Nuclear Physics A

Volume 466, Issue 1, 27 April 1987, Pages 29-69
Nuclear Physics A

Decay of the isoscalar giant monopole resonance in 208Pb

https://doi.org/10.1016/0375-9474(87)90344-7Get rights and content

Abstract

The decay of the isoscalar giant monopole resonance (GMR) in 208Pb has been studied with the 208Pb(α, α'n)207Pb reaction at θα = 0°. Comparison of the experimental data with detailed statistical model calculations shows a good overall agreement for the decay of both the GMR and the underlying continuum. Interpreting small discrepancies between the calculations and data for the GMR as indications for the presence of pre-equilibrium decay we find a direct decay branch of the GMR ⩽ 10% and a pre-equilibrium decay branch ⩽ 30%.

References (72)

  • D.H. Youngblood et al.

    Phys. Rev. Lett.

    (1977)
  • B. Schwesinger et al.

    Nucl. Phys.

    (1984)
  • R. de Haro et al.

    Nucl. Phys.

    (1982)
  • R. de Haro
  • K. Goeke et al.

    Ann. Rev. Nucl. Part. Sci.

    (1982)
  • K. van der Borg et al.

    Nucl. Phys.

    (1981)
  • B.L. Berman et al.

    Rev. Mod. Phys.

    (1975)
  • G.F. Bertsch et al.

    Rev. Mod. Phys.

    (1983)
  • P.F. Bortignon et al.

    J. de Phys.

    (1984)
  • K. Fuchs et al.

    Phys. Rev.

    (1985)
  • S. Brandenburg
  • S. Brandenburg et al.

    Phys. Lett.

    (1983)
  • F. Ajzenberg-Selove

    Nucl. Phys.

    (1980)
  • R.A. Cecil et al.

    Nucl. Instr. Meth.

    (1979)
  • W. Eyrich et al.

    Phys. Rev. Lett.

    (1979)
  • H. Steuer et al.

    Phys. Rev. Lett.

    (1981)
  • C. Djalali et al.

    Nucl. Phys.

    (1982)
  • L.J. Tassie

    Aust. J. Phys.

    (1956)
  • W. Bauhoff

    Z. Phys.

    (1984)
  • T. Yamagata et al.

    Phys. Lett.

    (1983)
  • A. Willis et al.

    Nucl. Phys.

    (1980)
  • H. Riedesel et al.

    Nucl. Phys.

    (1986)
  • W. Dilg et al.

    Nucl. Phys.

    (1973)
  • I. Hamamoto

    Phys. Reports

    (1974)
  • W.T. Wagner et al.

    Phys. Rev.

    (1975)
  • J. Rapaport et al.

    Nucl. Phys.

    (1979)
  • F. Pühlhofer

    Nucl. Phys.

    (1977)
    M.N. Harakeh, private...
  • L.S. Cardman

    Nucl. Phys.

    (1981)
  • H. Dias et al.

    Phys. Rev.

    (1986)
  • S. Brandenburg
  • A. van der Woude

    Prog. Part. Nucl. Phys.

    (1987)
  • M. Buenerd

    J. de Phys.

    (1984)
  • J. Speth et al.

    Rep. Prog. Phys.

    (1981)
  • J.P. Blaizot

    Phys. Reports

    (1980)
  • M. Buenerd et al.

    Phys. Lett.

    (1979)
  • N. Van Giai et al.

    Nucl. Phys.

    (1981)
  • Cited by (94)

    • The compression-mode giant resonances and nuclear incompressibility

      2018, Progress in Particle and Nuclear Physics
      Citation Excerpt :

      A similar “non-hybrid” model was used also by the TAMU group in analysis of 6Li-scattering data [35,36]. In the absence of data at a sufficient number of angles to perform a proper multipole decomposition analysis, it is possible still to identify the position and width of the ISGMR and ISGDR from a “difference of spectra” procedure, if data is available for angles at and near 0° (see, for example, Ref. [10]). The premise behind this technique is simple: The angular distribution of the ISGMR is maximal at 0° and declines sharply to a minimum (see Fig. 1, where this minimum is at about 2°).

    • Are there nuclear structure effects on the isoscalar giant monopole resonance and nuclear incompressibility near A ∼ 90?

      2016, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    • Nuclear Data Sheets for A = 208

      2007, Nuclear Data Sheets
    • Microscopic structure of the dipole compression mode in heavy nuclei

      2006, International Journal of Modern Physics E
    View all citing articles on Scopus
    1

    Permanent address: Department of Physics, University of Lund, Lund, Sweden.

    2

    Present and permanent address: Natuurkundig Laboratorium, Vrije Universiteit, 1007 MC Amsterdam, the Netherlands.

    View full text