Elsevier

Nuclear Physics A

Volume 451, Issue 4, 7 April 1986, Pages 679-700
Nuclear Physics A

New precision measurements of the muonic 3d52−2p32 X-ray transition in 24Mg and 28Si: Vacuum polarisation test and search for muon-hadron interactions beyond QED

https://doi.org/10.1016/0375-9474(86)90299-XGet rights and content

Abstract

Motivated by the importance of scalar particles in the current work on gauge theories of fundamental interactions, we have performed an improved muonic-atom experiment to search for long-range muon-hadron interactions. We remeasured the wavelengths of the 3d52−2p32 X-ray transitions in 24Mg and 28Si with the bent-crystal spectrometer at the SIN muon channel. The relative difference between the X-ray wavelength λexp and the theoretical value as obtained from QED calculations, averaged over the two elements, is λexpQUEDQUED = (-0.2 +-3.1) × 106 Assuming the validity of the QED calculations, we can put limits on an additional muon-nucleon interaction: If such an interaction were mediated, for example, by a scalar or vector (isoscalar) boson with a mass smaller than about 1 MeV, the corresponding coupling constant is gμgN ⩽ 0.8 × 10−6 × e2. Alternatively, if additional muon-hadron interactions are negligible, our result corresponds to a 950 ppm test of the vacuum polarisation effect in QED. The result can also be interpreted as a 3 ppm measurement of the negative muon mass.

References (47)

  • W. Ruckstuhl et al.

    Nucl. Phys.

    (1984)
  • W. Ruckstuhl et al.

    Nucl. Phys.

    (1985)
  • F.W.N. de Boer et al.

    Nucl. Phys.

    (1985)
  • B. Aas et al.

    Nucl. Phys.

    (1982)
    B. Aas et al.

    Nucl. Phys.

    (1982)
  • W. Beer et al.

    Nucl. Instr. Meth.

    (1978)
  • I. Beltrami et al.

    Nucl. Phys.

    (1984)
  • I. Beltrami

    Neue Präzisionsmessungen des myonischen 3d52-2p32 Übergangs in 24 Mg and 28 Si

  • W.W. Sapp

    Nucl. Instr. Meth.

    (1977)
  • G. de Chambrier et al.

    Nucl. Instr. Meth.

    (1984)
  • W. Schwitz et al.
  • P. Vogel

    Phys. Rev.

    (1980)
    P. Vogel

    Phys. Rev.

    (1973)
  • G.W. Erikson et al.

    Ann. of Phys.

    (1965)
    G.W. Erikson et al.

    Ann. of Phys.

    (1965)
  • E. Borie et al.

    Rev. Mod. Phys.

    (1982)
  • T. Dubler et al.

    Nucl. Phys.

    (1978)
  • L. Tauscher et al.

    Z. Phys.

    (1978)
  • S.J. Freedman et al.

    Phys. Rev. Lett.

    (1984)
    N.C. Mukhopadhyay et al.

    Phys. Rev.

    (1984)
  • V.E. Krohn et al.

    Phys. Rev.

    (1973)
    L. Koester et al.

    Phys. Rev. Lett.

    (1976)
  • R.W. Berard et al.

    Phys. Lett.

    (1973)
  • J.P. Desclaux

    Comp. Phys. Comm.

    (1975)
    B. Fricke

    Nuovo Cim. Lett.

    (1969)
  • E.J. McGuire

    Phys. Rev.

    (1971)
    E.J. McGuire

    Phys. Rev.

    (1970)
  • R.S. Willey

    Phys. Rev. Lett.

    (1984)
    R.M. Barnett et al.

    Phys. Lett.

    (1984)
  • B. AasR. Eichler
  • Y. Grushko et al.

    JETP (Sov. Phys.)

    (1978)
    P. Penning et al.

    Philips Research Reports

    (1961)
    N. Kato

    J. Phys. Soc. Japan

    (1964)
  • Cited by (57)

    • Lamb shift in muonic hydrogen-II. Analysis of the discrepancy of theory and experiment

      2011, Annals of Physics
      Citation Excerpt :

      So, in order to fully understand the problem, we also analyze the experimental procedures used in Ref. [5]. In many other experiments involving the high-precision spectroscopy of muonic transitions, the electron screening correction has been the limiting factor in analyzing the experiments [24,31]. Quite exotic processes involving muonic atoms have been studied in the literature (see, e.g., Ref. [67]).

    View all citing articles on Scopus

    This work is based on the Ph.D. thesis of I. Beltrami (ETH-Zurich, no. 7062, 1982); it was supported in part by SIN and the Schweizerischer Nationalfonds.

    1

    Present address: LAMPF, Los Alamos, NM 87545, USA.

    6

    Present address: Standard University, SLAC, Dept. of Physics, Stanford, CA 94305, USA.

    2

    Present address: Univ. de Genève, Bd. d'Yvoy 32, CH-1211 Genève 4, Switzerland.

    3

    Present address: Laboratory of Nuclear Science, MIT, Cambridge, MA 02139, USA.

    4

    Present address: Rockefeller Univ., c/o CERN, CH-1211 Genève, Switzerland.

    5

    Present address: Centre d'études nucléaires de Grenoble, F-85X-38041 Grenoble, France.

    View full text