Elsevier

Annals of Physics

Volume 102, Issue 2, December 1976, Pages 458-492
Annals of Physics

An energy-independent nonlocal potential model for bound and scattering states

https://doi.org/10.1016/0003-4916(76)90176-7Get rights and content

Abstract

The general expression of the nucleon-nucleus optical potential has been obtained using Watson's multiple scattering theory and Wolfenstein's parametrization of the nucleon-nucleon scattering amplitude. The resulting theoretical potential is nonlocal and consists of an energy-independent central volume plus surface real and imaginary potential and of a Thomas-like spin-orbit term. The analysis has been restricted to N = Z spherical nuclei, so that neither isospin-isospin nor spin-spin interactions have been included. The widely used Perey-Buck, Greenlees, and Watson expressions of the optical potential are easily obtained as particular cases. For practical purposes, the nonlocal potential has been parametrized in the Frahn-Lemmer form, using Woods-Saxon radial form factors, and the equivalent local potential (ELP) has been calculated by a Perey-Buck-like transformation.

The ELP has a radial behavior very similar to the original nonlocal one, but the potential depths and radii are energy dependent. The six free parameters in the ELP have been adjusted to fit the available experimental data in the −70 to + 150 MeV range of interest in nuclear reactions, namely, energies of single hole and single particle states, charge distributions, proton elastic scattering cross sections, and polarizations. The fitted potential depths show an energy dependence in remarkable agreement with the model predictions with a central nonlocality range β ≅ 1 F and a spin-orbit nonlocality range β3 ≅ 0.8 F. The relative importance of surface and volume dependence in the real central potential in also discussed.

References (70)

  • L.R.B. Elton et al.

    Nucl. Phys. A

    (1967)
  • S. Gamba et al.

    Nucl. Phys. A

    (1973)
  • F. Perey et al.

    Nucl. Phys.

    (1962)
  • G. Passatore

    Nucl. Phys. A

    (1968)
  • R. Lipperheide

    Nucl. Phys.

    (1966)
  • H. Feshbach

    Ann. Physics

    (1958)
  • H. Feshbach et al.

    Ann. Physics

    (1971)
  • C.A. Engelbrecht et al.

    Nucl. Phys. A

    (1972)
  • J. Hüfner et al.

    Ann. Physics

    (1972)
  • G.E. Brown et al.

    Nucl. Phys.

    (1963)
  • A.K. Kerman et al.

    Ann. Physics

    (1959)
  • H. Feshbach

    Ann. Physics

    (1962)
  • C. Schmit et al.

    Nucl. Phys. A

    (1975)
  • D. Slanina et al.

    Nucl. Phys. A

    (1968)
  • K. Seth

    Nucl. Phys. A

    (1969)
  • H. Fiedeldey

    Nucl. Phys.

    (1966)
  • M. Coz et al.

    Ann. Physics

    (1970)
  • F.G. Perey et al.

    Phys. Lett.

    (1964)
  • P.C. Sood

    Nucl. Phys.

    (1966)
  • A. Gersten

    Nucl. Phys. A

    (1967)
  • R.N. Boyd et al.

    Nucl. Phys. A

    (1972)
  • B.C. Sinha et al.

    Phys. Lett. B

    (1971)
  • G.C. Li et al.

    Phys. Rev. C

    (1861)
  • E.F. Fabri et al.

    CNEN Rep. RT/FI

    (1969)
  • R.M. Craig et al.

    Nucl. Phys.

    (1966)
  • G.R. Satchler

    Nucl. Phys. A

    (1967)
  • C.B. Fulmer et al.

    Phys. Rev.

    (1969)
  • S.K. Mark et al.

    Canad. J. Phys.

    (1966)
  • P.D. Greaves et al.

    Nucl. Phys. A

    (1972)
  • A.J. Houdayer et al.

    Canad. J. Phys.

    (1970)
  • R.K. Cole et al.

    Nucl. Phys.

    (1966)
  • F. Malaguti et al.

    Nucl. Phys. A

    (1973)
  • H. Schulz et al.

    Nucl. Phys. A

    (1967)
  • R.W. Manweiler

    Nucl. Phys. A

    (1975)
  • F.D. Becchetti et al.

    Phys. Rev.

    (1969)
  • Cited by (0)

    Supported by I.N.F.N.

    View full text