Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The X-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 Å resolution

Abstract

Phosphomannose isomerase (PMI) catalyses the reversible isomerization of fructose-6-phosphate (F6P) and mannose-6-phosphate (M6P). Absence of PMI activity in yeasts causes cell lysis and thus the enzyme is a potential target for inhibition and may be a route to antifungal drugs. The 1.7 ˚ crystal structure of PMI from Candida albicans shows that the enzyme has three distinct domains. The active site lies in the central domain, contains a single essential zinc atom, and forms a deep, open cavity of suitable dimensions to contain M6P or F6P. The central domain is flanked by a helical domain on one side and a jelly-roll like domain on the other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Orlean, P. Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O-mannosylation and N-glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 5796–5805 (1990).

    Article  CAS  Google Scholar 

  2. Payton, M.A., Rheinecker, M., Klig, L.S., De Tiani, M. & Bowden, E. A novel Saccheromyces cerevisiae mutant possesses a thermolabile phosphomannose isomerase. J. Bacteriol. 173, 2006–2010 (1991).

    Article  CAS  Google Scholar 

  3. Smith, D.J., Proudfoot, A.E.I., De Tiani, M., Wells, T.N.C. & Payton, M.A. Cloning and heterologous expression of the Candida albicans gene PMI 1 encoding phosphomannose isomerase. Yeast 11, 301–310 (1995).

    Article  CAS  Google Scholar 

  4. Manfredi, R., Nanetti, A., Mazzoni, A., Mastroianni, A. & Chiodo, F. The incidence, etiology and clinical significance of visceral mycoses in patients with AIDS. Minerva Medica 84, 383–391 (1993).

    CAS  PubMed  Google Scholar 

  5. Proudfoot, A.E.I., Payton, M.A. & Wells, T.N.C. Purification and characterisation of fungal and mammalian phosphomannose isomerases. J. Protein Chem. 13, 619–627 (1994).

    Article  CAS  Google Scholar 

  6. Proudfoot, A.E.I., Turcatti, G., Wells, T.N.C., Payton, M.A. & Smith, D.J., Purification, cDNA cloning and heterologous expression of human phosphomannose isomerase. Eur. J. Biochem. 219, 415–413 (1994).

    Article  CAS  Google Scholar 

  7. Shinabarger, D. et al. Purification and characterisation of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase. J. Biol. Chem. 266, 2080–2088 (1991).

    CAS  PubMed  Google Scholar 

  8. Schmidt, M., Arnold, W., Niemann, A., Kleickmann, A. & Puhler, A., The Rhizobium meliloti pmi gene encodes a new type of phosphomannose isomerase. Gene, 122, 35–43 (1992).

    Article  CAS  Google Scholar 

  9. Gracy, R.W. & Noltmann, E.A. Studies on phosphomannose isomerase. J. Biol. Chem. 243, 3161–3168 (1968).

    CAS  PubMed  Google Scholar 

  10. Walsh, C. Enzmatic raction mehanisms (WH. Freeman & Co, New York, 1979).

    Google Scholar 

  11. Wells, T.N.C, Coulin, F., Payton, M.A. & Proudfoot, A.E.I. Phosphomannose Isomerase from Saccharomyces cerevisiae contains two inhibitory metal binding sites. Biochemistry 32, 1294–1301 (1993).

    Article  CAS  Google Scholar 

  12. Wells, T.N.C., Payton, M.A. & Proudfoot, A.E.I. Inhibition of Phosphomannose isomerase by mercury ions. Biochemistry 33, 7641–7646 (1994).

    Article  CAS  Google Scholar 

  13. Wells, T.N.C, Scully, P.A., Paravicini, G., Proudfoot, A.E.I. & Payton, M.A. Mechanism of irreversible inactivation of phosphomannose isomerase by silver ions and flammazine. Biochemistry 3, 7896–7903 (1995).

    Article  Google Scholar 

  14. Tolley, S. et al. Crystallisation and preliminary X-ray analysis of Candida albicans Phosphomannose isomerase. J. Mol. Biol. 237, 349–350 (1994).

    Article  CAS  Google Scholar 

  15. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  16. Rossmann, M.G. et al. Structural comparisons of some small spherical plant viruses. J. Mol. Biol. 165, 711–736 (1983).

    Article  CAS  Google Scholar 

  17. Ko, T-P, Ng, J.D. and McPherson, A The Three-Dimensional Structure of Canavalin from Jack Bean (Canavalia ensiformis). Plant Physiol. 101, 729–744 (1993).

    Article  CAS  Google Scholar 

  18. Vallee, B.L. and Auld, D.S. Zinc co-ordination, function and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659 (1990).

    Article  CAS  Google Scholar 

  19. Bode, W. et al. Structure of astacin and implications for activation of astacinsand zinc-ligation of collagenases. Nature 358, 164–167 (1992).

    Article  CAS  Google Scholar 

  20. Bode, W., Gomis-Ruth, F-X. & Stockier, W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 331, 134–140 (1993).

    Article  CAS  Google Scholar 

  21. Roach, P.L. et al.. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375, 700–704 (1995).

    Article  CAS  Google Scholar 

  22. Collyer, C.A., Henrick, K. & Blow, D.M. Mechanism for aldose-ketose inter conversion by D-xylose isomerase involving ring opening followed by a 1,2-hydrideshift. 7. Mol. Biol. 212, 211–235 (1990).

    Article  CAS  Google Scholar 

  23. Wells, T.N.C., Scully, P. & Magnenat, E. Arginine 304 is an active site residue in phosphomannose isomerase from Candida albicans. Biochemistry 33, 5777–5782 (1994).

    Article  CAS  Google Scholar 

  24. Coulin, F. et al. Identification of Cys-150 in the active site of phosphomannose isomerase from Candida albicans. Biochemistry 32, 14139–14144 (1993).

    Article  CAS  Google Scholar 

  25. Bernard, A.R. et al. Selenomethionine labelling of phosphomannose isomerase changes its kinetic properties. Eur. J. Biochem. 230, 111–118 (1995).

    Article  CAS  Google Scholar 

  26. Seeholzer, S.H. Phosphoglucose isomerase: A ketol isomerase with aldol C2-epimerase activity. Biochemistry 30, 1237–1241 (1993).

    Google Scholar 

  27. Noltmann, E.A. Aldose-Ketose Isomerases. in The Enzymes IV (ed Boyer, P.D.) 271–314 (Academic Press, New York and London, 1972).

    Google Scholar 

  28. Malaisse-Lagae, F., Liemans, V., Yaylali, B., Sener, A. & Malaisse, W.J. Phosphoglucose isomerase-catalysed inter conversion of hexose phosphates; comparison with phosphomannose isomerase Biochim. Biophys. Acta 998, 118–125 (1989).

    Article  CAS  Google Scholar 

  29. Lavie, A., Allen, K.N., Petsko, G.A. & Ringe, D. X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33, 5469–5480 (1994).

    Article  CAS  Google Scholar 

  30. Carrell, H.L., Hoier, H. & Glusker, J.P. Modes of binding substrates and their analogues to the enzyme D-xylose isomerase. Acta Crystallogr. 050, 113–123 (1994).

    CAS  Google Scholar 

  31. Messerschmidt, A. & Pflugrath, J. Crystal orientation and X-ray pattern prediction routines for area detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  32. Leslie, A.G.W., Brick, P. & Wonacott A.T. MOSFLM. Daresbury Ab. Inf. Quart. Protein Crystallogr. 18, 33–39 (1986).

    Google Scholar 

  33. Collaborative Computational Project, Number 4 The CCP4 Suite: Programs for protein crystallography Acta Crystallogr. D50, 760–763 (1994).

  34. Jones, T.A. Interactive computer graphics: FRODO Meth. Enzymol. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  35. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  36. Hendrickson, W.A. Stereochemically restrained refinement of macromolecular structures. Metn. Enzymol. 115, 252–271 (1985).

    Article  CAS  Google Scholar 

  37. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  38. Nicholls, A. GRASP: Graphical representation and analysis of surface properties. (Columbia University, New York, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleasby, A., Wonacott, A., Skarzynski, T. et al. The X-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 Å resolution. Nat Struct Mol Biol 3, 470–479 (1996). https://doi.org/10.1038/nsb0596-470

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0596-470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing