Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insight into the role of the ribosomal tunnel in cellular regulation

Abstract

Nascent proteins emerge out of ribosomes through an exit tunnel, which was assumed to be a firmly built passive path. Recent biochemical results, however, indicate that the tunnel plays an active role in sequence-specific gating of nascent chains and in responding to cellular signals. Consistently, modulation of the tunnel shape, caused by the binding of the semi-synthetic macrolide troleandomycin to the large ribosomal subunit from Deinococcus radiodurans, was revealed crystallographically. The results provide insights into the tunnel dynamics at high resolution. Here we show that, in addition to the typical steric blockage of the ribosomal tunnel by macrolides, troleandomycin induces a conformational rearrangement in a wall constituent, protein L22, flipping the tip of its highly conserved β-hairpin across the tunnel. On the basis of mutations that alleviate elongation arrest, the tunnel motion could be correlated with sequence discrimination and gating, suggesting that specific arrest motifs within nascent chain sequences may induce a similar gating mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The binding mode of TAO to the large ribosomal subunit.
Figure 2: The global conformational changes of L22 hairpin triggered by TAO binding.
Figure 3: The putative progression of SecM arrest in the exit tunnel.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Milligan, R.A. & Unwin, P.N. Location of exit channel for nascent protein in 80S ribosome. Nature 319, 693–695 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Yonath, A., Leonard, K.R. & Wittmann, H.G. A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236, 813–816 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Gabashvili, I.S. et al. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistant mutants of L4 and L22. Mol. Cell 8, 181–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Tenson, T. & Ehrenberg, M. Regulatory nascent peptides in the ribosomal tunnel. Cell 108, 591–594 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Morris, D.R. & Geballe, A.P. Upstream open reading frames as regulators of mRNA translation. Mol. Cell. Biol. 20, 8635–8642 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarker, S., Rudd, K.E. & Oliver, D. Revised translation start site for secM defines an atypical signal peptide that regulates E. coli secA expression. J. Bacteriol. 182, 5592–5595 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Gong, F. & Yanofsky, C. Instruction of translating ribosome by nascent peptide. Science 297, 1864–1867 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Stroud, R.M. & Walter, P. Signal sequence recognition and protein targeting. Curr. Opin. Struct. Biol. 9, 754–759 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Unge, J. et al. The crystal structure of ribosomal protein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. Structure 6, 1577–1586 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Schluenzen, F. et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413, 814–821 (2001).

    Article  Google Scholar 

  14. Hansen, J.L. et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Schluenzen, F. et al. Structural basis for the antibiotic activity of ketolides and azalides. Structure 11, 329–338 (2003).

    Article  Google Scholar 

  16. Periti, P., Tonelli, F., Mazzei, T. & Ficari, F. Antimicrobial chemoimmunoprophylaxis in colorectal surgery with cefotetan and thymostimulin: prospective, controlled multicenter study. Italian Study Group on Antimicrobial Prophylaxis in Abdominal Surgery. J. Chemother. 5, 37–42 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Chepkwony, H.K., Roets, E. & Hoogmartens, J. Liquid chromatography of troleandomycin. J. Chromatogr. A 914, 53–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Tenson, T. & Mankin, A.S. Short peptides conferring resistance to macrolide antibiotics. Peptides 22, 1661–1668 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Verdier, L., Gharbi-Benarous, J., Bertho, G., Mauvais, P. & Girault, J.P. Antibiotic resistance peptides: interaction of peptides conferring macrolide and ketolide resistance with Staphylococcus aureus ribosomes: conformation of bound peptides as determined by transferred NOE experiments. Biochemistry 41, 4218–4229 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Douthwaite, S., Hansen, L.H. & Mauvais, P. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol. Microbiol. 36, 183–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hansen, L.H., Mauvais, P. & Douthwaite, S. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol. Microbiol. 31, 623–631 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Xiong, L., Shah, S., Mauvais, P. & Mankin, A.S. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol. Microbiol. 31, 633–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Goldman, R.C., Fesik, S.W. & Doran, C.C. Role of protonated and neutral forms of macrolides in binding to ribosomes from Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 34, 426–431 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davydova, N., Streltsov, V., Wilce, M., Liljas, A. & Garber, M. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J. Mol. Biol. 322, 635–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Liao, S., Lin, J., Do, H. & Johnson, A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Stern, S., Moazed, D. & Noller, H.F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 164, 481–489 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Bailey, S. The CCP4 suite — programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  30. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  32. Flocco, M.M. & Mowbray, S.L. Cα-based torsion angles: a simple tool to analyze protein conformational changes. Protein Sci. 4, 2118–2122 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Glaser, R. Zarivach and P. Fucini for critical discussions; I. Agmon, R. Albrecht, C. Liebe, A. Wolff, H. Bartels, W.S. Bennett, E. Ben-Zeev, C. Glotz, H.A.S. Hansen, M. Kessler and A. McLeod for participating in this work; and the staff at ID19/SBC/APS and ID29/ESRF/EMBL. The Max-Planck-Society, the US National Institutes of Health, the German Science & Technology Ministry and the Kimmelman Center for Macromolecular Assembly provided support. A.Y. holds the Hellen and Martin Kimmel Professorial Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada Yonath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berisio, R., Schluenzen, F., Harms, J. et al. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Mol Biol 10, 366–370 (2003). https://doi.org/10.1038/nsb915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing