Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis

Abstract

Sulfur metabolism depends on the iron-containing porphinoid siroheme. In Salmonella enterica, the S-adenosyl-L-methionine (SAM)-dependent bismethyltransferase, dehydrogenase and ferrochelatase, CysG, synthesizes siroheme from uroporphyrinogen III (uro'gen III). The reactions mediated by CysG encompass two branchpoint intermediates in tetrapyrrole biosynthesis, diverting flux first from protoporphyrin IX biosynthesis and then from cobalamin (vitamin B12) biosynthesis. We determined the first structure of this multifunctional siroheme synthase by X-ray crystallography. CysG is a homodimeric gene fusion product containing two structurally independent modules: a bismethyltransferase and a dual-function dehydrogenase-chelatase. The methyltransferase active site is a deep groove with a hydrophobic patch surrounded by hydrogen bond donors. This asymmetric arrangement of amino acids may be important in directing substrate binding. Notably, our structure shows that CysG is a phosphoprotein. From mutational analysis of the post-translationally modified serine, we suggest a conserved role for phosphorylation in inhibiting dehydrogenase activity and modulating metabolic flux between siroheme and cobalamin pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Sequence alignments for CysGA and CysGB with homologous proteins.
Figure 3: Overall protein fold and global asymmetry arising from linker differences.
Figure 4: CysGB and Met8p.
Figure 5: A stereo view of the methyltransferase active site from the native CysG structure, which sits deep within a cleft between the domains IA and IIA.
Figure 6: Serine phosphorylation in the dehydrogenase-ferrochelatase active site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Murphy, M.J., Siegel, L.M., Tove, S.R. & Kamin, H. Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc. Natl. Acad. Sci. USA 71, 612–616 (1974).

    Article  CAS  Google Scholar 

  2. Murphy, M.J. & Siegel, L.M. Siroheme and sirohydrochlorin. The basis for a new type of porphyrin-related prosthetic group common to both assimilatory and dissimilatory sulfite reductases. J. Biol. Chem. 248, 6911–6919 (1973).

    CAS  PubMed  Google Scholar 

  3. Siegel, L.M., Murphy, M.J. & Kamin, H. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. I. The Escherichia coli hemoflavoprotein: molecular parameters and prosthetic groups. J. Biol. Chem. 248, 251–264 (1973).

    CAS  PubMed  Google Scholar 

  4. Christner, J.A., Munck, E., Janick, P.A. & Siegel, L.M. Mössbauer spectroscopic studies of Escherichia coli sulfite reductase. Evidence for coupling between the siroheme and Fe4S4 cluster prosthetic groups. J. Biol. Chem. 256, 2098–2101 (1981).

    CAS  PubMed  Google Scholar 

  5. Janick, P.A. & Siegel, L.M. Electron paramagnetic resonance and optical spectroscopic evidence for interaction between siroheme and Fe4S4 prosthetic groups in Escherichia coli sulfite reductase hemoprotein subunit. Biochemistry 21, 3538–3547 (1982).

    Article  CAS  Google Scholar 

  6. Crane, B.R., Siegel, L.M. & Getzoff, E.D. Sulfite reductase structure at 1.6 Å: evolution and catalysis for reduction of inorganic anions. Science 270, 59–67 (1995).

    Article  CAS  Google Scholar 

  7. Siegel, L.M. Biochemistry of the Sulfur Cycle (Academic, New York, 1975).

    Book  Google Scholar 

  8. Peck, H.D. & Lissolo, T. The Nitrogen and Sulfur Cycles 99–132 (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  9. Scott, A.I. How nature synthesizes vitamin B12—a survey of the last four billion years. Angew. Chem. Int. Edn. Engl. 32, 1223–1376 (1993).

    Article  Google Scholar 

  10. Jordan, P.M. Highlights in haem biosynthesis. Curr. Opin. Struct. Biol. 4, 902–911 (1994).

    Article  CAS  Google Scholar 

  11. Blanche, F., Debussche, L., Thibaut, D., Crouzet, J. & Cameron, B. Purification and characterization of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Pseudomonas denitrificans. J. Bacteriol. 171, 4222–4231 (1989).

    Article  CAS  Google Scholar 

  12. Raux, E., Schubert, H.L. & Warren, M.J. Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell Mol. Life Sci. 57, 1880–1893 (2000).

    Article  CAS  Google Scholar 

  13. Warren, M.J. et al. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem. J. 302, 837–844 (1994).

    Article  CAS  Google Scholar 

  14. Warren, M.J. et al. Enzymatic synthesis of dihydrosirohydrochlorin (precorrin-2) and of a novel pyrrocorphin by uroporphyrinogen III methylase. FEBS Lett. 261, 76–80 (1990).

    Article  CAS  Google Scholar 

  15. Jeter, R.M., Olivera, B.M. & Roth, J.R. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J. Bacteriol. 159, 206–213 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Raux, E. et al. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem. J. 370, 505–516 (2003).

    Article  CAS  Google Scholar 

  17. Raux, E., McVeigh, T., Peters, S.E., Leustek, T. & Warren, M.J. The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem. J. 338, 701–708 (1999).

    Article  CAS  Google Scholar 

  18. Schubert, H.L. et al. The structure of Saccharomyces cerevisiae Met8p, a bifunctional dehydrogenase and ferrochelatase. EMBO J. 21, 2068–2075 (2002).

    Article  CAS  Google Scholar 

  19. Schubert, H.L., Wilson, K.S., Raux, E., Woodcock, S.C. & Warren, M.J. The X-ray structure of a cobalamin biosynthetic enzyme, cobalt-precorrin-4 methyltransferase. Nat. Struct. Biol. 5, 585–592 (1998).

    Article  CAS  Google Scholar 

  20. Crouzet, J. et al. Genetic and sequence analysis of an 8.7-kilobase Pseudomonas denitrificans fragment carrying eight genes involved in transformation of precorrin-2 to cobyrinic acid. J. Bacteriol. 172, 5980–5990 (1990).

    Article  CAS  Google Scholar 

  21. Keller, J.P. et al. The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase. Structure 10, 1475–1487 (2002).

    Article  CAS  Google Scholar 

  22. Goldman, B.S. & Roth, J.R. Genetic structure and regulation of the cysG gene in Salmonella typhimurium. J. Bacteriol. 175, 1457–1466 (1993).

    Article  CAS  Google Scholar 

  23. Raux, E., Thermes, C., Heathcote, P., Rambach, A. & Warren, M.J. A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J. Bacteriol. 179, 3202–3212 (1997).

    Article  CAS  Google Scholar 

  24. Schubert, H.L., Raux, E., Wilson, K.S. & Warren, M.J. Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis. Biochemistry 38, 10660–10669 (1999).

    Article  CAS  Google Scholar 

  25. Fazzio, T.G. & Roth, J.R. Evidence that the CysG protein catalyzes the first reaction specific to B12 synthesis in Salmonella typhimurium, insertion of cobalt. J. Bacteriol. 178, 6952–6959 (1996).

    Article  CAS  Google Scholar 

  26. Belyaeva, T., Griffiths, L., Minchin, S., Cole, J. & Busby, S. The Escherichia coli cysG promoter belongs to the 'extended −10' class of bacterial promoters. Biochem. J. 296, 851–857 (1993).

    Article  CAS  Google Scholar 

  27. Burns, H.D., Belyaeva, T.A., Busby, S.J. & Minchin, S.D. Temperature-dependence of open-complex formation at two Escherichia coli promoters with extended −10 sequences. Biochem. J. 317, 305–311 (1996).

    Article  CAS  Google Scholar 

  28. Robin, C. et al. Primary structure, expression in Escherichia coli, and properties of S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase from Bacillus megaterium. J. Bacteriol. 173, 4893–4896 (1991).

    Article  CAS  Google Scholar 

  29. Mascaro, L. Jr. et al. Synthesis of methionine carrying a chiral methyl group and its use in determining the steric course of the enzymatic C-methylation of indolepyruvate during indolmycin biosynthesis. J. Am. Chem. Soc. 99, 273–274 (1977).

    Article  CAS  Google Scholar 

  30. Warren, M.J., Gonzalez, M.D., Williams, H.J., Stolowich, N.J. & Scott, A.I. Uroporphyrinogen III methylase catalyzes the enzymatic synthesis of sirohydrochlorins II and IV by a clockwise mechanism. J. Am. Chem. Soc. 112, 5343–5345 (1990).

    Article  CAS  Google Scholar 

  31. Eschenmoser, A. Vitamin B12: experiments concerning the origin of its molecular structure. Angew. Chem. Int. Edn. Engl. 27, 5–39 (1988).

    Article  Google Scholar 

  32. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  33. Griffiths, L. & Cole, J.A. Lack of redox control of the anaerobically-induced nirB+ gene of Escherichia coli K-12. Arch. Microbiol. 147, 364–369 (1987).

    Article  CAS  Google Scholar 

  34. Rossmann, M.G. Comparison of the evolution of heme binding and NAD binding proteins. Fed. Proc. 35, 2112–2114 (1976).

    CAS  PubMed  Google Scholar 

  35. Woodcock, S.C. et al. Effect of mutations in the transmethylase and dehydrogenase/chelatase domains of sirohaem synthase (CysG) on sirohaem and cobalamin biosynthesis. Biochem. J. 330, 121–129 (1998).

    Article  CAS  Google Scholar 

  36. Woodcock, S.C. & Warren, M.J. Evidence for a covalent intermediate in the S-adenosyl-L-methionine–dependent transmethylation reaction catalysed by sirohaem synthase. Biochem. J. 313, 415–421 (1996).

    Article  CAS  Google Scholar 

  37. Warren, M.J., Bolt, E. & Woodcock, S.C. 5-Aminolaevulinic acid synthase and uroporphyrinogen methylase: two key control enzymes of tetrapyrrole biosynthesis and modification. Ciba Found. Symp. 180, 26–40 (1994).

    CAS  PubMed  Google Scholar 

  38. Roessner, C.A. Use of cobA and cysGA as red fluorescent indicators. Methods Mol. Biol. 183, 19–30 (2002).

    CAS  PubMed  Google Scholar 

  39. Dean, A.M. & Koshland, D.E. Jr. Electrostatic and steric contributions to regulation at the active site of isocitrate dehydrogenase. Science 249, 1044–1046 (1990).

    Article  CAS  Google Scholar 

  40. Hurley, J.H., Dean, A.M., Sohl, J.L., Koshland, D.E. Jr. & Stroud, R.M. Regulation of an enzyme by phosphorylation at the active site. Science 249, 1012–1016 (1990).

    Article  CAS  Google Scholar 

  41. Stryer, L. Biochemistry 524 (Freeman, New York, 1998).

    Google Scholar 

  42. Fujino, E., Fujino, T., Karita, S., Sakka, K. & Ohmiya, K. Cloning and sequencing of some genes responsible for porphyrin biosynthesis from the anaerobic bacterium Clostridium josui. J. Bacteriol. 177, 5169–5175 (1995).

    Article  CAS  Google Scholar 

  43. Roessner, C.A., Huang, K.X., Warren, M.J., Raux, E. & Scott, A.I. Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 148, 1845–1853 (2002).

    Article  CAS  Google Scholar 

  44. Wu, J.Y., Siegel, L.M. & Kredich, N.M. High-level expression of Escherichia coli NADPH-sulfite reductase: requirement for a cloned cysG plasmid to overcome limiting siroheme cofactor. J. Bacteriol. 173, 325–333 (1991).

    Article  CAS  Google Scholar 

  45. de La Fortelle, E. & Bricogne, G. Maximum-Likelihood Heavy-Atom Parameter Refinement for the Multiple Isomorphous Replacement and Multiwavelength Anomalous Diffraction Methods 472–494 (Academic, New York, 1997).

  46. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  47. Abrahams, J.P. & Leslie, A.W.G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  48. McRee, D.E. XtalView/Xfit–A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  49. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structure. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.E.S. was supported by a predoctoral US National Science Foundation fellowship and the Skaggs Institute for Chemical Biology. This research was funded by a grant from the US National Institutes of Health (NIH) to E.D.G. M.J.W. acknowledges funding from the UK Biotechnology and Biological Research Council and the Wellcome Trust. We thank D. Barondeau, M. Didonato, J. Huffman and C. Kassmann for useful discussions, A. Arvai and E. Garcin for assistance with data collection and M. Pique for help generating Figure 6b,c. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the DOE, Office of Biological and Environmental Research, and by the NIH, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth D Getzoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroupe, M., Leech, H., Daniels, D. et al. CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Mol Biol 10, 1064–1073 (2003). https://doi.org/10.1038/nsb1007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing