Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites

Abstract

Somites are fundamental structures within the paraxial mesoderm of the vertebrate embryo that give rise to the vertebrae and muscle of the trunk and tail. Studies of knockout mice and gene expression analyses have shown that the Notch pathway is crucial in establishing the reiterative pattern of somites1. A large-scale screen in zebrafish previously identified five mutants that show abnormalities in somite boundary formation2. Four have essentially the same phenotype, with posterior somite defects2,3,4 and neuronal hyperplasia5,6; recent work has suggested that genes affected in these mutants encode components of the Notch signaling cascade5. The fifth mutant, fused somites (fss), shows a different phenotype characterized by complete lack of somite formation along the entire antero-posterior axis2,3. Gene expression and phenotypic analyses in mutant embryos have implicated Fss in somite formation independent of Notch signaling4,5, suggesting the presence of a new pathway regulating somite boundary formation. We show here that the fss gene encodes a T-box transcription factor that is expressed in intermediate to anterior presomitic mesoderm (PSM) and is involved in PSM maturation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The gene tbx24 is expressed in the PSM.
Figure 2: The gene tbx24 encodes a T-box protein.
Figure 3: Abrogation of tbx24 function inhibits somite segmentation.
Figure 4: A mutation in tbx24 results in the fss mutant phenotype.
Figure 5: The gene tbx24 is expressed in maturating PSM cells.
Figure 6: The phenotype caused by a mutation in fss/tbx24 is different from that of Tbx6−/− mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Saga, Y. & Takeda, H. The making of the somite: molecular events in vertebrate segmentation. Nature Rev. Genet. 2, 835–845 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. van Eeden, F.J. et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development 123, 153–164 (1996).

    CAS  PubMed  Google Scholar 

  3. van Eeden, F.J., Holley, S.A., Haffter, P. & Nüsslein-Volhard, C. Zebrafish segmentation and pair-rule patterning. Dev. Genet. 23, 65–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, Y.J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Holley, S.A., Geisler, R. & Nüsslein-Volhard, C. Control of her1 expression during zebrafish somitogenesis by a Δ-dependent oscillator and an independent wave-front activity. Genes Dev. 14, 1678–1690 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gray, M., Moens, C.B., Amacher, S.L., Eisen, J.S. & Beattie, C.E. Zebrafish deadly seven functions in neurogenesis. Dev Biol. 237, 306–323 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Chapman, D.L. & Papaioannou, V.E. Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391, 695–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, J. et al. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94, 515–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Stachel, S.E., Grunwald, D.J. & Myers, P.Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117, 1261–1274 (1993).

    CAS  PubMed  Google Scholar 

  10. Campbell, C., Goodrich, K., Casey, G. & Beatty, B. Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with the Drosophila omb gene. Genomics 28, 255–260 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Bollag, R.J. et al. An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nature Genet. 7, 383–389 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Bamshad, M. et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nature Genet. 16, 311–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Weinberg, E.S. et al. Developmental regulation of zebrafish MyoD in wild type, no tail and spadetail embryos. Development 122, 271–280 (1996).

    CAS  PubMed  Google Scholar 

  15. Sawada, A. et al. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127, 1691–1702 (2000).

    CAS  PubMed  Google Scholar 

  16. Durbin, L. et al. Anteroposterior patterning is required within segments for somite boundary formation in developing zebrafish. Development 127, 1703–1713 (2000).

    CAS  PubMed  Google Scholar 

  17. Kwok, C. et al. Characterization of whole genome radiation hybrid mapping resources for non-mammalian vertebrates. Nucleic Acids Res. 26, 3562–3566 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hukriede, N.A. et al. Radiation hybrid mapping of the zebrafish genome. Proc. Natl Acad. Sci. USA 96, 9745–9750 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shimoda, N. et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873–4880 (2001).

    CAS  PubMed  Google Scholar 

  21. Amemiya, C.T., Zhong, T.P., Silverman, G.A., Fishman, M.C. & Zon, L.I. Zebrafish YAC, BAC, and PAC genomic libraries. Methods Cell Biol. 60, 235–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Furthauer, M., Thisse, C. & Thisse, B. A role for FGF-8 in the dorsoventral patterning of the zebrafish gastrula. Development 124, 4253–4264 (1997).

    CAS  PubMed  Google Scholar 

  23. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998).

    CAS  PubMed  Google Scholar 

  24. Pourquie, O. & Tam, P.P. A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Dev. Cell 1, 619–620 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hug, B., Walter, V. & Grunwald, D.J. tbx6, a Brachyury-related gene expressed by ventral mesendodermal precursors in the zebrafish embryo. Dev. Biol. 183, 61–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Griffin, K.J., Amacher, S.L., Kimmel, C.B. & Kimelman, D. Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125, 3379–3388 (1998).

    CAS  PubMed  Google Scholar 

  27. Alexandre, D. et al. Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122, 735–746 (1996).

    CAS  PubMed  Google Scholar 

  28. Krauss, S. et al. Zebrafish pax[zf-a]: a paired box-containing gene expressed in the neural tube. EMBO J. 10, 3609–3619 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Wilson for critical reading of the manuscript. We thank S.E. Stachel, B. Thisse, C. Amemiya, K. Griffin, N. Holder, S.A. Holley and Y.-J. Jiang for goosecoid cDNA, fgf8 cDNA, the PAC library, spt cDNA, hoxb1b cDNA, fixed fsste314a mutant embryos and fixed aeitr233 mutant embryos, respectively. We thank F.J.M. van Eeden and S.A. Holley for providing helpful information. We also thank H.M. Okamoto for helpful discussion and K. Ikeyama, P. Yeon-Hwa and S. Minami for technical assistance. This work was supported by the Organized Research Combination System grant of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroyuki Takeda or Kazuo Araki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikaido, M., Kawakami, A., Sawada, A. et al. Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nat Genet 31, 195–199 (2002). https://doi.org/10.1038/ng899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing