Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genes

Abstract

Here we show that the cis-acting genetic element aps (amplification-promoting sequence), isolated from the nontranscribed spacer region of tobacco ribosomal DNA (rDNA), increases the level of expression of recombinant proteins. Transgenic tobacco plants, transformed with expression cassettes containing the herbicide-resistant acetolactate synthase (hr-ALS) gene or the green fluorescent protein (GFP) gene fused to the aps sequence, had greater levels of corresponding messenger RNAs (mRNAs) and proteins compared to transformants lacking aps. Analysis of transgenic plants showed that aps increased the copy number and transcription of the adjacent heterologous genes and, in the case of hr-ALS, enhanced the herbicide resistance phenotype. Both the increased transgene copy number and enhanced expression were stably inherited. These data provide the first evidence that the aps sequence can be used for gene amplification in transgenic plants and possibly other multicellular organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and molecular organization of the tobacco aps.
Figure 2: Expression of the hr-ALS gene in ALS and ALS-aps transformants.
Figure 3: Expression of GFP in GFP and GFP-aps transformants.

Similar content being viewed by others

References

  1. Kumagai, M.H. et al. Rapid, high-level expression of biologically active - trichosanthin in transfected plants by an RNA viral vector. Proc. Natl. Acad. Sci. USA 90, 427–430 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  2. Bogorad, L. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol. 18, 257–263 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Alt, F.W., Kellems, R.E., Bertino, J.R. & Schimke, R.T. Selective multiplication of dihydrofolate reductase genes in methatrexate-resistant variants of cultured murine cells. J. Biol. Chem. 251 , 1357–1370 (1978).

    Google Scholar 

  4. Stark, G. R. & Wahl, G.M. Gene amplification. Annu. Rev. Biochem. 53, 447–491 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Lengauer, C., Kinzier, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  6. Schimke, R.T. Gene amplification in cultured cells. J. Biol. Chem. 263, 5989–5992 (1988).

    CAS  PubMed  Google Scholar 

  7. Pasion, S.G., Hartigan, J.A., Kumar, V. & Biswas, D.K. DNA sequence responsible for the amplification of adjacent genes. DNA 6, 419–428 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  8. Wegner M. et al. Cis-acting sequences from mouse rDNA promote plasmid amplification and persistence in mouse cells: implication of HMG-1 in their function. Nucleic Acids Res. 17, 9909–9932 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McArthur, J.G. & Stanners, C.P. A genetic element that increases the frequency of gene amplification. J. Biol. Chem. 266, 6000–6005 ( 1991).

    CAS  PubMed  Google Scholar 

  10. McArthur, J.G., Beitel L.K., Chamberlain J.W. & Stanners, C.P. Elements which stimulate gene amplification in mammalian cells: role of recombinogenic sequences/structures and transcriptional activation . Nucleic Acids Res. 19, 2477– 2484 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stolzenburg, F., Gerwig, R., Dinkl, E. & Grummt, F. Structural homologies and functional similarities between mammalian origins of replication and amplification promoting sequences. Chromosoma 103, 209–214 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  12. Hemann, C., Gartner, E., Weidle, U.K. & Grummt, F. High-copy expression vector based on amplification-promoting sequences. DNA Cell Biol. 13, 437–445 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Meyer, J. et al. Inhibition of HIV-1 replication by a high-copy-number vector expressing antisense RNA for reverse transcriptase. Gene 129, 263–268 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Kellems, R.E. Gene amplification strategies for protein production in mammalian cells. Methods Mol. Genet. 5, 143–155 (1994).

    CAS  Google Scholar 

  15. Bedbrook, J.R., O'Dell, M. & Flavell, R.B. Amplification of rearranged repeated DNA sequences in cereal plants. Nature 288, 133–137 (1980).

    Article  CAS  Google Scholar 

  16. Phillips, R.L., Kaeppler, S.M. & Olhoft, P. Genetic instability of plant tissue culture: breakdown of normal controls. Proc. Natl. Acad. Sci. USA 91, 5222–5226 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Donn, G., Tischer, E., Smith, J.A. & Goodman, H.M. Herbicide-resistant alfalfa cells: an example of gene amplification in plants . J. Mol. Appl. Genet. 2, 621– 635 (1984).

    CAS  PubMed  Google Scholar 

  18. Borisjuk, N.V. In Plant cell engineering. Results of science and technology, Vol. 9 (ed. Gleba, Y.) 73–113 (VINITI, Moscow; 1988) (in Russian).

    Google Scholar 

  19. Borisjuk, N.V., Momot, V.P. & Gleba, Y. Novel class of rDNA repeat units in somatic hybrids between Nicotiana and Atropa. Theor. Appl. Genet. 76, 108–112 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  20. Hemleben, V. & Zentgraf, U. Structural organization and regulation of transcription by RNA polymerase I of plant nuclear ribosomal RNA genes. In Results and problems in cell differentiation. Plant promoters and transcription factors, Vol. 20 (ed. Nover, L.) 3–24 (Springer-Verlag, Berlin-Heidelberg, Germany; 1994).

    Chapter  Google Scholar 

  21. Borisjuk N. & Hemleben, V. Nucleotide sequence of the potato rDNA intergenic spacer. Plant Mol. Biol. 21, 381–384 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Borisjuk N.V. et al. Structural analysis of rDNA in the genus Nicotiana. Plant Mol. Biol. 35, 655–660 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Volkov, R.A., Borisjuk, N.V., Panchuk, I.I., Schweizer, D. & Hemleben, V. Elimination and rearrangement of parental rDNA in allotetraploid Nicotiana tabacum. Mol. Biol. Evol. 16, 311–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hernandez, P., Martin-Parras, L., Martinez-Robles, M.L. & Schvartzman, J.B. Conserved features in the mode of replication of eukaryotic ribosomal RNA genes. EMBO J. 12, 1475– 1485 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caddle, M.S., Lussier, R.H. & Heintz, N.H. Intramolecular DNA triplexes, bent DNA and DNA unwinding elements in the initiation region of an amplified dihydrofolate reductase replicon. J. Mol. Biol. 211, 19– 33 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Haughn, G.W., Smith, J., Mazur, B. & Somerville, C. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211, 266–271 (1988).

    Article  CAS  Google Scholar 

  27. Reichel, C. et al. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells . Proc. Natl. Acad. Sci. USA 93, 5888– 5893 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Borisjuk, N.V. et al. Production of recombinant proteins in plant root exudates. Nat. Biotechnol. 17, 466–469 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. de Carvalho, F. et al. Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J. 14, 2595–2602 (1992).

    Article  Google Scholar 

  30. Kneidl, K., Dinkl, E. & Grummt, F. An intrinsically bent region upstream of the transcription start site of the rRNA genes of Arabidopsis thaliana interacts with an HMG-related protein. Plant Mol. Biol. 27, 705–713 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Dobbs, D., Shaiu, W.-L. & Benlow, R.M. Modular sequence elements associated with origin regions in eukaryotic chromosomal DNA. Nucleic Acids Res. 22 , 2479–2489 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brun, C., Surdej, P. & Miassod, R. Relationship between scaffold-attached regions, sequences replicating autonomously in yeast, and a chromosomal replication origin in the Drosophila rDNA. Exp. Cell Res. 208, 104–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Bevan, M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12, 8711–8721 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borisjuk, N. et al. Calreticulin in plant cells: primary structure, developmentally regulated expression and intracellular distribution. Planta 206 , 504–514 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Reichel for the GFP expression cassette and F. Petersen for help with GFP detection. hr-ALS expression cassette, and the samples of Pursuit herbicide were kindly provided by the American Cyanamid Company (Princeton, NJ). This work was supported by a grant from Phytomedics, Inc. (Dayton, NJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Raskin.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisjuk, N., Borisjuk, L., Komarnytsky, S. et al. Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genes. Nat Biotechnol 18, 1303–1306 (2000). https://doi.org/10.1038/82430

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing