Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Conservation of Genome Structure Between Rice and Wheat

Abstract

We have compared the structure of the genomes of rice and hexaploid bread wheat, which speciated more than 60 million years ago, by reciprocal mapping of DNA probes. Results indicate that many wheat chromosomes contain homoeologous genes and genomk DNA fragments in a similar order to that found on rice chromosomes. This conservation of gene order along chromosomes differing in DNA content by some 30–fold, may provide a basis for novel gene isolation strategies in wheat, one of the world's major food crop species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wolf, K.H., Gouy, M., Yang, Y.-W., Sharp, P.M. and Li, W.H. 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA 86: 6201–6205.

    Article  Google Scholar 

  2. Martin, W., Gierl, A. and Saedler, H. 1989. Molecular evidence for precietaceous angiosperms origins. Nature 339: 46–48.

    Article  CAS  Google Scholar 

  3. O'Brien, S.J. and Graves, J.A.M. 1990. Report of the committee on comparative gene mapping. Cyto. Cell. Genet. 55: 406–433.

    Article  CAS  Google Scholar 

  4. Maccarone, P., Watson, J.M., Francis, D., Selwood, L., Kola, I. and Graves, J.A.M. 1992. The evolution of human chromosome 21: Evidence from in situ hybridisation in Marsupials and a Monotreme. Genomics 13: 1119–1124.

    Article  CAS  PubMed  Google Scholar 

  5. Devos, K.M., Millan, T. and Gale, M.D. 1993. Comparative RFLP maps of homoeologous chromosomes of wheat, rye and barley. Theor. Appl. Genet. 85: 784–792.

    Article  CAS  PubMed  Google Scholar 

  6. Bonierbale, M., Plaisted, R.L. and Tanksley, S.D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Whitkus, R., Doebley, J. and Lee, M. 1992. Comparative genome mapping of sorghum and maize. Genetics 132: 1119–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahn, S. and Tanksley, S.D. 1993. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA. 90: 7980–7984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanksley, S.D., Bernatzky, R., Lapitan, N.L. and Prince, J.P. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA. 85: 6419–6423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Devos, K.M. and Gale, M.D. 1992. The genetic maps of wheat and their potential in plant breeding. Outlook on Agriculture 22: 93–99.

    Article  Google Scholar 

  11. Moore, G., Abbo, S., Cheung, W., Foote, T. et al. 1993. Key features of cereal genome organisation as revealed by the use of cytosine methylation-sensitive restriction endonucleases. Genomics 15: 472–482.

    Article  CAS  PubMed  Google Scholar 

  12. Saito, A., Yano, M., Kishimoto, N., Nakagahra, M. et al. 1991. Linkage map of restriction fragment length polymorphism loci in rice. Japn. J. Breeding 41: 665–670.

    Article  CAS  Google Scholar 

  13. Tanksley, S.D., Causse, M., Fulton, T., Ann, N. et al. 1992. A high density molecular map of the rice genome. Rice Genet. Newsl. 9: 111–115.

    Google Scholar 

  14. Nagamura, Y., 1993. Rice Genome 2(1), (ed: Minobe, Y.) 3 and 11-13.

  15. Kinoshita, T. 1990. Report of the Committee on Gene Symbolization Nomenclature and Linkage Groups. Rice Genet. Newsl. 7: 16–50.

    Google Scholar 

  16. Hart, G.E., Gale, M.D. and Mclntosh, R.A. 1993. Triticum aestivum and T. tauschii (wheat), p. 6.204–6.219. In: Genetic Maps. Locus Maps of Complex Genomes, 6th Ed. (O'Brien, S. J.) (Ed.). Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  17. Devos, K.M., Chinoy, C.N., Atkinson, M.D., Hansen, L., Wettstein-Knowles, P., von and Gale, M.D. 1991. Chromosomal location in wheat of the genes coding for the acyl carrier proteins I and III. Theor. Appl. Genet. 82: 3–5.

    Article  CAS  PubMed  Google Scholar 

  18. Moore, G., Gale, M.D., Kurata, N. and Flavell, R. B. 1993. Molecular analysis of small grain cereal genomes—Current status and prospects. Bio/Technology 11: 584–589.

    CAS  Google Scholar 

  19. Devos, K.M., Atkinson, M.D., Chinoy, C.N., Liu, C.J. and Gale, M.D. 1992. Chromosomal rearrangements in rye genome relative to that of wheat. Theor. Appl. Genet. 83: 931–939.

    Article  CAS  PubMed  Google Scholar 

  20. Sears, E.R. 1954. The aneuploids of common wheat. Missouri Agricultural Experimental Station. Res. Bull. 572: 1–59.

    Google Scholar 

  21. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, L., 1987. Mapmaker. An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurata, N., Moore, G., Nagamura, Y. et al. Conservation of Genome Structure Between Rice and Wheat. Nat Biotechnol 12, 276–278 (1994). https://doi.org/10.1038/nbt0394-276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0394-276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing