Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Culture pH Affects Expression Rates and Glycosylation of Recombinant Mouse Placental Lactogen Proteins by Chinese Hamster Ovary (CHO) Cells

Abstract

Glycosylation patterns and specific expression rates of the recombinant protein mouse placental lactogen-I (mPL-I) by Chinese hamster ovary (CHO) cells varied significantly over the extracellular pH (pHe) range of 6.1 to 8.7. The maximum specific mPL-I expression rates occurred between pHe 7.6 and 8.0. The pHe effect on protein expression was confirmed using a different CHO cell expressing the unglycosylated recombinant protein mouse placental lactogen-II (mPL-II). Decreases in the extent of glycosylation of mPL-I were observed at low (below 6.9) and high (above 8.2) pHe values. The pHe dependent variations in mPL-I accumulation in the supernatant as well as in glycosylation patterns were not the result of enzymatic degradation in the culture medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Musgrove, E., Seaman, M. and Hedley, D. 1987. Relationship between cytoplasmic pH and proliferation during exponential growth and cellular quiescence. Exp. cell Res. 172: 65–75.

    Article  CAS  Google Scholar 

  2. Fellenz, M.P. and Gerweck, L.E. 1988. Influence of extracellular pH on intracellular pH and cell energy status: relationship to hyperthermic sensitivity. Radiat. Res. 116: 305–312.

    Article  CAS  Google Scholar 

  3. McQueen, A. and Bailey, J.E. 1991. Growth inhibition of hybridoma cells by ammonium ion: correlation with effects on intracellular pH. Bioproc. Eng. 6: 49–61.

    Google Scholar 

  4. Miller, W.M., Blanch, H.W. and Wilke, C.R. 1988. Kinetic analysis of hybridoma growth and metabolism in batch and continuous culture: effect of nutrient concentrations, dilution rate, and pH. Biotechnol. Bioeng. 32: 947–965.

    Article  CAS  Google Scholar 

  5. Ozturk, S.S. and Palsson, B.O. 1991. Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor. Biotechnol. Prog. 7: 481–494.

    Article  CAS  Google Scholar 

  6. Backman, P., Kimura, T., Schon, A. and Wadso, I. 1992. Effects of pH variations on the kinetics of growth and energy metabolism in cultured T-lymphoma cells: a microcalorimetric study. J. cell. Physiol. 150: 99–103.

    Article  CAS  Google Scholar 

  7. Hakimian, J. and Ismail-Beigi, F. 1991. Enhancement of glucose transport in clone 9 cells by exposure to alkaline pH: Studies on potential mechanisms. J. Membrane Biol. 120: 29–39.

    Article  CAS  Google Scholar 

  8. Ohta, M., Nelson, D., Nelson, J., Meglasson, M.D. and Erecinska, M. 1991. Relationships between energy level and insulin secretion in isolated rat islets of langerhans: A study at various pH values. Biochem. Pharmacol. 42: 593–598.

    Article  CAS  Google Scholar 

  9. Freshney, R.I. 1987. Culture of Animal cells: a Manual of Basic Technique, second edition, p. 69. Alan R. Liss, Inc. New York.

    Google Scholar 

  10. Arathoon, W.R. and Birch, J.R. 1986. Large-scale cell culture in biotechnology. Science 232: 1390–1395.

    Article  CAS  Google Scholar 

  11. Murata, M., Eto, Y. and Shibai, H. 1988. Large-scale production of erythroid differentiation factor (EDF) by gene-engineered Chinese hamster ovary (CHO) cells in suspension culture. J. Ferment. Technol. 66: 501–507.

    Article  CAS  Google Scholar 

  12. Conradt, H.S., Nimtz, M., Dittmar, K.E.J., Lindenmaier, W., Hoppe, J. and Hauser, H. 1989. Expression of human interleukin-2 in recombinant baby hamster kidney, Ltk-, and Chinese hamster ovary cells. J. Biol. Chem. 264: 17368–17373.

    CAS  Google Scholar 

  13. Curling, E.M.A., Hayter, P.M., Baines, A.J., Bull, A.T., Gull, K., Strange, P.G. and Jenkins, N. 1990. Recombinant human interferon-γ: differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem. J. 272: 333–337.

    Article  CAS  Google Scholar 

  14. Gottesman, M.M. 1985. Growth properties of Chinese hamster ovary (CHO) cells, p. 145–147. In: Molecular cell Genetics. Gottesman, M.M. (Ed.). Wiley, New York.

    Google Scholar 

  15. Kurano, N., Leist, C., Messi, F., Kurano, S. and Feichter, A. 1990. Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor: 1. Effects of physical and chemical environments. J. Biotechnol. 15: 101–112.

    Article  CAS  Google Scholar 

  16. Wergeland, L., Wallberg, C. and Ericsson, R. 1987. Hybridoma culture for the continuous production of monoclonal antibodies: fractionalized factorial design experiment for optimization, p. 795. In: Modern Approaches to Animal cell Technology. Spier, R.E. and Griffiths, J.B. (Eds.). Butterworths, Boston.

    Chapter  Google Scholar 

  17. Doyle, C. and Butler, M. 1990. The effect of pH on the toxicity of ammonia to a murine hybridoma. J. Biotechnol. 15: 91–100.

    Article  CAS  Google Scholar 

  18. Hayter, P.M., Kirby, N.F. and Spier, R.E. 1992. Relationship between hybridoma growth and monoclonal antibody production. Enzyme Microb. Technol. 4: 454–461.

    Article  Google Scholar 

  19. Gaitanaki, C.J., Sugden, P.H. and Fuller, S.J. 1990. Stimulation of protein synthesis by raised extracellular pH in cardiac myocytes and perfused hearts. FEES Lett. 260: 42–44.

    Article  CAS  Google Scholar 

  20. England, B.K., Chastain, J.L. and Mitch, W.E. 1991. Abnormalities in protein synthesis and degradation induced by extracellular pH inBC3Hl myocytes. Am. J. Physiol. 260: C277–C282.

    Article  CAS  Google Scholar 

  21. Matlin, K.S., Skibbens, J. and McNeil, P.L. 1988. Reduced extracellular pH reversibly inhibits oligomerization, intracellular transport, and processing of the influenza hemagglutinin in infected Madin-Darby canine kidney cells. J. Biol. Chem. 263: 11478–11485.

    CAS  Google Scholar 

  22. Tapper, H. and Sundler, R. 1990. Role of lysosomal and cytosolic pH in the regulation of macrophage lysosomal enzyme secretion. Biochem. J. 272: 407–414.

    Article  CAS  Google Scholar 

  23. Wang, X., Sato, N., Greer, M.A., Greer, S.E. and McAdams, S. 1990. Role of extracellular calcium and calmodulin in prolactin secretion induced by hypos-molarity, thyrotropin-releasing hormone, and high K+ in GH4C1 cells. Acta Endo. 123: 218–224.

    CAS  Google Scholar 

  24. Rothman, R.J., Warren, L., Vliegenhart, F.G. and Hard, K.J. 1989. Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas. Biochem. 28: 1377–1384.

    Article  CAS  Google Scholar 

  25. Goochee, C.F. and Monica, T. 1990. Environmental effects on protein glycosylation. Bio/Technology 8: 421–427.

    CAS  Google Scholar 

  26. Goochee, C.F., Gramer, M.J., Andersen, D.C., Bahr, J.B. and Rasmussen, J.R. 1991. The oligosaccharides of glycoproteins: Bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio/Technology 9: 1347–1355.

    Article  CAS  Google Scholar 

  27. Ogren, L. and Talamantes, F. 1988. Prolactins of pregnancy and their cellular source. Int. Rev. Cytol. 112: 1–65.

    Article  CAS  Google Scholar 

  28. Colosi, P., Talamantes, F. and Linzer, D.I.H. 1987. Molecular cloning and expression of mouse placental lactogen I complementary deoxyribonucleic acid. Molec. Endo. 1: 767–776.

    Article  CAS  Google Scholar 

  29. Colosi, P., Ogren, L., Southard, J.N., Thordarson, G., Linzer, D.I.H. and Talamantes, F. 1988. Biological, immunological, and binding properties of recombinant mouse placental lactogen-1. Endo. 123: 2662–2667.

    Article  CAS  Google Scholar 

  30. Kobata, A. 1979. Use of endo-and exoglycosidases for structural studies of glycoconjugatcs. Anal. Biochem. 100: 1–14.

    Article  CAS  Google Scholar 

  31. Tarentino, A.L., Gomez, D.M. and Plummer, T.H. 1985. Deglycosylation of asparagine-linked glycans by Peptide:N-Glycosidase F. Biochem. 24: 4665–4671.

    Article  CAS  Google Scholar 

  32. Colosi, P., Ogren, L., Thordarson, G. and Talamantes, F. 1987. Purification and partial characterization of two prolactin-like glycoprotein hormone complexes from the midpregnant mouse conceptus. Endo. 120: 2500–2511.

    Article  CAS  Google Scholar 

  33. van Erp, R., van Sommersen, A.P.G. and Gribnau, T.C.J. 1991. Monitoring of the production of monoclonal antibodies by hybridomas. Part II: Characterization and purification of acid proteases present in cell culture supernatant. J. Biotech. 20: 249–262.

    Article  CAS  Google Scholar 

  34. Markoff, E., Sigel, M.B., Lacour, N., Seavey, B.K., Friesen, H.G. and Lewis, U.J. 1988. Glycosylation selectively alters the biological activity of prolactin. Endo. 123: 1303–1306.

    Article  CAS  Google Scholar 

  35. Young, K.H., Buhi, W.C., Horseman, N., Davis, J., Kraeling, R., Linzer, D. and Bazer, F.W. 1990. Biological activities of glycosylated and nonglycosylated porcine prolactin. Mol. cell. Endo. 71: 155–162.

    Article  CAS  Google Scholar 

  36. Cole, E.S., Price, A.E., Peterson, P.A., Gluggio, V.M., Bernasconi, R.J. and Logvinenko, K.B. 1992. Glycosylated and non-glycosylated forms of human prolactin have different bioactivities in the Nb2 lymphoma cell proliferation assay. J. cell. Biochem., Keystone Symp. 16D: 154.

    Google Scholar 

  37. Eagle, H. 1973. The effect of environmental pH on the growth of normal and malignant cells. J. cell. Physiol. 82: 1–8.

    Article  CAS  Google Scholar 

  38. Gonzalez-Mendez, R., Hahn, G.M., Wade-Jardetzky, N.G. and Jardetzky, O. 1988. Comparison of intracellular pH measurements by 31P NMR and weak acid partitioning in Chinese hamster ovary fibroblasts. Magn. Reson. Med. 6: 373–380.

    Article  CAS  Google Scholar 

  39. Jackson, L.L., Colosi, P., Talamantes, F. and Linzer, D.I.H. 1986. Molecular cloning of mouse placental lactogen cDNA. Proc. Natl. Acad. Sci. USA 83: 8496–8500.

    Article  CAS  Google Scholar 

  40. Lee, S.J. and Nathans, D. 1988. Proliferin secreted by cultured cells binds to mannose-6-phosphate receptors. J. Biol. Chem. 263: 3521–3527.

    CAS  Google Scholar 

  41. Tanaka, T., Shiu, R.P.C., Gout, P.W., Beer, C.T., Noble, R.L. and Friesen, H.G. 1980. A new sensitive and specific bioassay for lactogenic hormones: measurement of prolactin and growth hormone in human serum. J. Clin. Endo. Metab. 51: 1058–1063.

    Article  CAS  Google Scholar 

  42. Gout, P.W., Noble, R.L. and Beer, C.T. 1986. Cultured Nb rat lymphoma cells in endocrine and cancer research. Biochem. cell Biol. 64: 659–666.

    Article  CAS  Google Scholar 

  43. Russel, D.H., Buckley, A.R., Montgomery, D.W., Larson, N.A., Gout, P.W., Beer, C.T., Putnam, C.W., Zukowski, C.F. and Kibler, R. 1987. Prolactin-dependent mitogenesis in Nb2 node lymphoma cells: effects of immunosuppressive cyclopeptides, J. Immunol. 138: 276–284.

    Google Scholar 

  44. Ogren, L., Southard, J.N., Colosi, P., Linzer, D.I.H. and Talamantes, F. 1989. Mouse placental lactogen-I: RIA and gestational profile in maternal serum. Endo. 125: 2253–2257.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borys, M., Linzer, D. & Papoutsakis, E. Culture pH Affects Expression Rates and Glycosylation of Recombinant Mouse Placental Lactogen Proteins by Chinese Hamster Ovary (CHO) Cells. Nat Biotechnol 11, 720–724 (1993). https://doi.org/10.1038/nbt0693-720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0693-720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing