Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for mRNA secondary structure in the control of translation initiation

Abstract

A role for messenger RNA (mRNA) secondary structure in the control of translation initiation has been assumed for many years1–3. Strong additional evidence supporting this notion is now provided by work on the lamB gene of Escherichia coli, which codes for a major outer membrane protein that functions both as a receptor for phages λ, K-10 and TP1, and as a component of the maltose and maltodextrin transport system4–9. Mutations that affect translation initiation of the lamB mRNA have been described previously10. DNA sequence analysis indicated that one such mutation, lamB 701, is located two nucleotides promoter-proximal to the lamB Shine–Dalgarno sequence. A second mutation, lamB 708, is located in the sixth codon of the lamB gene (see Fig. 1). Schwartz et al.10 suggested that these two point mutations affect translation initiation by favouring the formation of a base-paired hairpin structure in the lamB transcript which makes the Shine–Dalgarno sequence11 inaccessible to ribosomes (see Fig. 2). This suggestion was genetically testable because it predicted that the translation initiation defect caused by either of the two mutations alone would be suppressed in a lamB 701–708 double mutant (see Fig. 2). Here we demonstrate that the 701 and 708 mutations do indeed suppress each other, as predicted by an effect attributable to mRNA secondary structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gold, L. et al. A. Rev. Microbiol. 35, 365–403 (1981).

    Article  CAS  Google Scholar 

  2. Queen, C. & Rosenberg, M. Cell 25, 241–249 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Merril, C. R., Gottesman, M. E. & Adhya, S. L. J. Bact. 147, 875–887 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Randall-Hazelbauer, L. & Schwartz, M. J. Bact. 116, 1436–1446 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Roa, M. J. Bact. 140, 680–686 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wandersman, C. & Schwartz, M. Proc. natn. Acad. Sci. U.S.A. 75, 5636–5639 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Szmelcman, S. & Hofnung, M. J. Bact. 124, 112–118 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wandersman, C., Schwartz, M. & Ferenci, T. J. Bact. 140, 1–13 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferenci, T. & Boos, W. J. supramolec. Struct. 13, 101–116 (1980).

    Article  CAS  Google Scholar 

  10. Schwartz, M., Roa, M. & Débarbouillé, M. Proc. natn. Acad. Sci. U.S.A. 78, 2937–2941 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Shine, J. & Dalgarno, L. Nature 254, 34–38 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Moreno, F. et al. Nature 286, 356–359 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hall, M. N., Schwartz, M. & Silhavy, T. J. J. molec. Biol. (in the press).

  14. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Roa, M. & Clément, J. M. FEBS Lett. 121, 127–129 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Ray, P. N. & Pearson, M. L. J. molec. Biol. 85, 163–175 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Ray, P. N. & Pearson, M. L. Nature 253, 647–650 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ray, P. N. & Pearson, M. L. Virology 73, 381–388 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Hedgepeth, J., Clément, J. M., Marchal, C., Perrin, D. & Hofnung, M. Proc. natn. Acad. Sci. U.S.A. 77, 2621–2625 (1980).

    Article  ADS  Google Scholar 

  20. Emr, S. D., Schwartz, M. & Silhavy, T. J. Proc. natn. Acad. Sci. U.S.A. 75, 5802–5806 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Emr, S. D., Hall, M. N. & Silhavy, T. J. J. Cell Biol. 86, 701–711 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Hall, M. N. & Silhavy, T. J. A. Rev. Genet. 15, 91–142 (1981).

    Article  CAS  Google Scholar 

  23. Hall, M. N. & Schwartz, M. Ann. Microbiol. Institut Pasteur, 133A, 123–127 (1982).

    Article  Google Scholar 

  24. Gabay, J. & Yasunaka, K. Eur. J. Biochem. 104, 13–18 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

  26. Tinoco, I. Jr et al. Nature new Biol. 246, 40–41 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. Jacob, F. & Monod, J. J. molec. Biol. 3, 318–356 (1961).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, M., Gabay, J., Débarbouillé, M. et al. A role for mRNA secondary structure in the control of translation initiation. Nature 295, 616–618 (1982). https://doi.org/10.1038/295616a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295616a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing