Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction of a fluorescent probe with acetylcholine-activated synaptic membrane

Abstract

GRÜNHAGEN and Changeux have shown1,2 that Torpedo membrane fragments stained with the antimalarial, quinacrine, show a rapid increase in fluorescence after mixing with cholinergic agonists (see ref. 3). These authors suggest that the fluorescence intensity of quinacrine associated with cholinergic receptors increases during the transition of the receptor from its resting to its active state. We report here an electrophysiological analysis of the kinetic behaviour of the postsynaptic membrane of intact vertebrate muscle fibres treated with quinacrine. The kinetic data from the fluorescence and electrophysiological experiments show remarkable parallels, and we suggest that both experimental procedures reveal the binding of quinacrine to the activated receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grünhagen, H. H. & Changeux, J. P. J. molec. Biol. 106, 517–535 (1976).

    Article  Google Scholar 

  2. Grunhagen, H. H., Iwatsubo, M. & Changeux, J. P. C.r. hebd. Séanc. Acad. Sci., Paris D 283, 1105–1108 (1976).

    CAS  Google Scholar 

  3. Grünhagen, H. H. in Electrical Phenomena at the Biological Membrane Level (ed. ROUX, F). 171–183 (Elsevier, Amsterdam, 1977).

    Google Scholar 

  4. Adams, P. R. Br. J. Pharmac. 53, 308–310 (1975).

    Article  CAS  Google Scholar 

  5. Neher, E. & Sakmann, B. Proc. natn. Acad. Sci. U.S.A. 72, 2410 2214 (1975).

    Article  Google Scholar 

  6. Sheridan, R. F. & Lester, H. A. Proc. natn. Acad. Sci. U.S.A. 72, 3496–3500 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Marty, A., Neild, T. & Ascher, P. Nature 261, 502–504 (1976).

    Article  ADS  Google Scholar 

  8. Sakmann, B. & Adams, P. R. pflügers. Arch. 365, 145 (1976).

    Article  Google Scholar 

  9. Magleby, K. & Stevens, C. F. J. Physiol. Lond. 223, 173–197 (1972).

    Article  CAS  Google Scholar 

  10. Ascher, P., Marty, A. & Neild, T. J. Physiol. Lond. 263, 121–122P (1976).

    Google Scholar 

  11. Grünhagen, H. H. & Changeux, J. P. J. molec. Biol. 106, 497–516 (1976).

    Article  Google Scholar 

  12. Adams, P. R. J. Physiol. Lond. 246, 61–61P (1975).

    Google Scholar 

  13. Ruff, R. L. J. Physiol. Lond. 264, 89–124 (1977).

    Article  CAS  Google Scholar 

  14. Woodhull, A. M. J. gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ADAMS, P., FELTZ, A. Interaction of a fluorescent probe with acetylcholine-activated synaptic membrane. Nature 269, 609–611 (1977). https://doi.org/10.1038/269609a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269609a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing