Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transmitter metabolism in substantia nigra after inhibition of dopaminergic neurones by butyrolactone

Abstract

DOPAMINERGIC nigrostriatal neurones have recently been found to contain dopamine (DA) also in their dendrites1. Certain observations suggest a release of transmitter from these dendrites: depolarisation by potassium ions induces a release of 3H-DA from incubated tissue slices of rat substantia nigra2, and stimulation of the median forebrain bundle increases 3,4-dihydroxyphenylacetic acid, a major metabolic of DA3, in the mesencephalic region containing dopaminergic cell bodies and dendrites4, as well as in caudate–putamen, the terminal area. These similarities between terminal and somato-dendritic areas point to a similar regulation of DA metabolism and an active role of DA in both parts of the neurone. We have studied this question in a situation where the dopaminergic neurones are inhibited. γ-Butyrolactone (GBL) applied systemically, strongly reduces unit activity of the dopaminergic neurones in zona compacta of substantia nigra5. Under these conditions, the changes observed in the somato–dendritic complex differed markedly from those reported for the terminal area6–12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Björklund, A., and Lindvall, O., Brain Res., 83, 531–537 (1975).

    Article  Google Scholar 

  2. Geffen, L. B., Jessell, T. M., Cuello, A. C., and Iversen, L. L., Nature, 260, 258–260 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Roffler-Tarlov, S., Sharman, D. F., and Tegerdine, P., Br. J. Pharmac., 42, 343–351 (1971). Wilk, S., Watson, E., and Travis, B., Eur. J. Pharmac., 30, 238–243 (1975).

    Article  CAS  Google Scholar 

  4. Korf, J., Zieleman, M., and Westerink, B. H. C., Nature, 260, 257–258 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Roth, R. H., Walters, J. R., and Aghajanian, G. K., Frontiers in Catecholamine Research (edit. by Usdin, E., and Snyder, S.), 567–574 (Pergamon, New York, 1975).

    Google Scholar 

  6. Gessa, G. L., et al., Life Sci., 5, 1921–1930 (1966).

    Article  CAS  Google Scholar 

  7. Aghajanian, G. K., and Roth, R. H., J. Pharmac. exp. Ther., 175, 131–138 (1970).

    CAS  Google Scholar 

  8. Walters, J. R., and Roth, R. H., Biochem. Pharmac., 21, 2111–2121 (1972).

    Article  CAS  Google Scholar 

  9. Walters, J. R., Roth, R. H., and Aghajanian, G. K., J. Pharmac. exp. Ther., 186, 1630–1639 (1973).

    Google Scholar 

  10. Walters, J. R., and Roth, R. H., J. Pharmac. exp. Ther., 191, 82–91 (1974).

    CAS  Google Scholar 

  11. Kehr, W., Carlsson, A., Linqvist, M., Magnusson, T., and Atack, C., J. Pharm. Pharmac., 24, 744–747 (1972).

    Article  CAS  Google Scholar 

  12. Stock, G., Magnusson, T., and Anden, N. E., Naunyn Schmeideberg's Arch. Pharmac., 278, 347–361 (1973).

    Article  CAS  Google Scholar 

  13. Lichtensteiger, W., Prog. Histochem. Cytochem., 1, 185–276 (1970); Lichtensteiger, W., Lienhart, R., Hefti, F., and Felix, D., Brain Res. (in the press).

    Article  Google Scholar 

  14. Schlumpf, M., Waser, P. G., Lichtensteiger, W., and Langemann, H., Biochem. Pharmac., 23, 2447–2449 (1974).

    Article  CAS  Google Scholar 

  15. Palkovits, M., Brownstein, M., Saavedra, J. M., and Axelrod, J., Brain Res., 77, 137–149 (1974).

    Article  CAS  Google Scholar 

  16. Hefti, F., and Lichtensteiger, W. J., 27, 647–649 (1976).

  17. Einarsson, P., Hallman, H., and Jonsson, G., 53, 15–24 (1975).

  18. Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T., and Atack, C. V., 24, 371–384 (1972).

  19. Walters, J. R., and Roth, R. H., Biochem. Pharmac., 25, 649–654 (1976).

    Article  CAS  Google Scholar 

  20. Koenig, J. F. R., and Klippel, R. A., The Rat Brain. A Stereotaxic Atlas (Williams and Wilkins, Baltimore, 1963).

    Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem., 193, 265–275 (1951).

    CAS  Google Scholar 

  22. Lienhart, R., Lichtensteiger, W., and Langemann, H., Naunyn-Schmiedeberg's Arch. Pharmac., 286, 353–369 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HEFTI, F., LIENHART, R. & LICHTENSTEIGER, W. Transmitter metabolism in substantia nigra after inhibition of dopaminergic neurones by butyrolactone. Nature 263, 341–343 (1976). https://doi.org/10.1038/263341a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263341a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing