Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy

Abstract

Congenital muscular dystrophy is a heterogeneous and severe, progressive muscle-wasting disease that frequently leads to death in early childhood1,2. Most cases of congenital muscular dystrophy are caused by mutations in LAMA2, the gene encoding the α2 chain of the main laminin isoforms expressed by muscle fibres. Muscle fibre deterioration in this disease is thought to be caused by the failure to form the primary laminin scaffold, which is necessary for basement membrane structure3, and the missing interaction between muscle basement membrane and the dystrophin–glycoprotein complex (DGC)4 or the integrins5. With the aim to restore muscle function in a mouse model for this disease, we have designed a minigene of agrin, a protein known for its role in the formation of the neuromuscular junction6. Here we show that this mini-agrin—which binds to basement membrane7 and to α-dystroglycan8, a member of the DGC—amends muscle pathology by a mechanism that includes agrin-mediated stabilization of α-dystroglycan and the laminin α5 chain. Our data provides in vivo evidence that a non-homologous protein in combination with rational protein design can be used to devise therapeutic tools that may restore muscle function in human muscular dystrophies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of mice with different genotypes.
Figure 2: Overall phenotype of laminin α2-deficient animals expressing the mini-agrin transgene.
Figure 3: Analysis of muscle in the different mice.
Figure 4: Involvement of laminin α chains and dystroglycan.

Similar content being viewed by others

References

  1. Tome, F. M. S., Guicheney, P. & Fardeau, M. in Neuromuscular Disorders: Clinical and Molecular Genetics (ed. Emery, A. E. H.) 21–57 (John Wiley & Sons, West Sussex, 1998).

    Google Scholar 

  2. Miyagoe-Suzuki, Y., Nakagawa, M. & Takeda, S. Merosin and congenital muscular dystrophy. Microsc. Res. Tech. 48, 181–191 (2000).

    Article  CAS  Google Scholar 

  3. Colognato, H. & Yurchenco, P. D. Form and function: the laminin family of heterotrimers. Dev. Dyn. 218, 213–234 (2000).

    Article  CAS  Google Scholar 

  4. Campbell, K. P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80, 675–679 (1995).

    Article  CAS  Google Scholar 

  5. Mayer, U. et al. Absence of integrin α7 causes a novel form of muscular dystrophy. Nature Genet. 17, 318–323 (1997).

    Article  CAS  Google Scholar 

  6. Ruegg, M. A. & Bixby, J. L. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci. 21, 22–27 (1998).

    Article  CAS  Google Scholar 

  7. Denzer, A. J., Brandenberger, R., Gesemann, M., Chiquet, M. & Ruegg, M. A. Agrin binds to the nerve-muscle basal lamina via laminin. J. Cell Biol. 137, 671–683 (1997).

    Article  CAS  Google Scholar 

  8. Gesemann, M., Brancaccio, A., Schumacher, B. & Ruegg, M. A. Agrin is a high-affinity binding protein of dystroglycan in non-muscle tissue. J. Biol. Chem. 273, 600–605 (1998).

    Article  CAS  Google Scholar 

  9. Patton, B. L., Miner, J. H., Chiu, A. Y. & Sanes, J. R. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J. Cell Biol. 139, 1507–1521 (1997).

    Article  CAS  Google Scholar 

  10. Ringelmann, B. et al. Expression of laminin α1, α2, α4, and α5 chains, fibronectin, and tenascin-C in skeletal muscle of dystrophic 129ReJ dy/dy mice. Exp. Cell Res. 246, 165–182 (1999).

    Article  CAS  Google Scholar 

  11. Talts, J. F. et al. Structural and functional analysis of the recombinant G domain of the laminin α 4 chain and its proteolytic processing in tissues. J. Biol. Chem. 275, 35192–35199 (2000).

    Article  CAS  Google Scholar 

  12. Denzer, A. J. et al. Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J. 17, 335–343 (1998).

    Article  CAS  Google Scholar 

  13. Burgess, R. W., Nguyen, Q. T., Son, Y. J., Lichtman, J. W. & Sanes, J. R. Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23, 33–44 (1999).

    Article  CAS  Google Scholar 

  14. Jaynes, J. B., Chamberlain, J. S., Buskin, J. N., Johnson, J. E. & Hauschka, S. D. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol. Cell. Biol. 6, 2855–2864 (1986).

    Article  CAS  Google Scholar 

  15. Sternberg, E. A. et al. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8, 2896–2909 (1988).

    Article  CAS  Google Scholar 

  16. Kuang, W. et al. Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models. J. Clin. Invest. 102, 844–852 (1998).

    Article  CAS  Google Scholar 

  17. Sunada, Y., Bernier, S. M., Kozak, C. A., Yamada, Y. & Campbell, K. P. Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M chain gene to dy locus. J. Biol. Chem. 269, 13729–13732 (1994).

    CAS  Google Scholar 

  18. Xu, H., Wu, X. R., Wewer, U. M. & Engvall, E. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nature Genet. 8, 297–302 (1994).

    Article  CAS  Google Scholar 

  19. Xu, H., Christmas, P., Wu, X. R., Wewer, U. M. & Engvall, E. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc. Natl Acad. Sci. USA 91, 5572–5576 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Colognato, H. & Yurchenco, P. D. The laminin α2 expressed by dystrophic dy(2J) mice is defective in its ability to form polymers. Curr. Biol. 9, 1327–1330 (1999).

    Article  CAS  Google Scholar 

  21. MacPike, A. D. & Meier, H. Comparison of dy and dy2J, two alleles expressing forms of muscular dystrophy in the mouse. Proc. Soc. Exp. Biol. Med. 151, 670–672 (1976).

    Article  CAS  Google Scholar 

  22. Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Ervasti, J. M., Kahl, S. D. & Campbell, K. P. Purification of dystrophin from skeletal muscle. J. Biol. Chem. 266, 9161–9165 (1991).

    CAS  Google Scholar 

  24. Henry, M. D. & Campbell, K. P. A role for dystroglycan in basement membrane assembly. Cell 95, 859–870 (1998).

    Article  CAS  Google Scholar 

  25. Cote, P. D., Moukhles, H., Lindenbaum, M. & Carbonetto, S. Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nature Genet. 23, 338–342 (1999).

    Article  CAS  Google Scholar 

  26. Meier, T. et al. A minigene of neural agrin encoding the laminin-binding and acetylcholine receptor-aggregating domains is sufficient to induce postsynaptic differentiation in muscle fibres. Eur. J. Neurosci. 10, 3141–3152 (1998).

    Article  CAS  Google Scholar 

  27. Sorokin, L. M., Pausch, F., Durbeej, M. & Ekblom, P. Differential expression of five laminin alpha (1-5) chains in developing and adult mouse kidney. Dev. Dyn. 210, 446–462 (1997).

    Article  CAS  Google Scholar 

  28. Schulze, B., Mann, K., Battistutta, R., Wiedemann, H. & Timpl, R. Structural properties of recombinant domain III-3 of perlecan containing a globular domain inserted into an epidermal-growth-factor-like motif. Eur. J. Biochem. 231, 551–556 (1995).

    Article  CAS  Google Scholar 

  29. Herrmann, R. et al. Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum. Mol. Genet. 9, 2335–2340 (2000).

    Article  CAS  Google Scholar 

  30. Turney, S. G., Culican, S. M. & Lichtman, J. W. A quantitative fluorescence-imaging technique for studying acetylcholine receptor turnover at neuromuscular junctions in living animals. J. Neurosci. Methods 64, 199–208 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Chiquet, S. Kröger, U. Mayer, L. Sorokin and R. Timpl for providing us with antibodies. We thank S. Arber, A. Brancaccio and T. Meier for discussions. M. Dürrenberger and U. Sauder for help in electron microscopy; J.-F. Spetz for DNA injection; M. Willem for providing us with the MCK promoter; and P. Scotton for the help with artwork. Special thanks go to D. Walz for his help in the statistical analysis of the results. This work was supported by grants from the Swiss National Science Foundation (MAR), the Kanton of Basel-Stadt (MAR), the Swiss Foundation for Research on Muscle Diseases (MAR and UM), from the National Institutes of Health (EE), the Novartis Research Foundation (UM), the Deutsche Forschungsgemeinschaft, Aktion Benni and company, and the Ernst und Berta Grimmke-Stiftung (HL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus A. Ruegg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moll, J., Barzaghi, P., Lin, S. et al. An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature 413, 302–307 (2001). https://doi.org/10.1038/35095054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35095054

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing