Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance

Abstract

Males heterozygous for the t-haplotype form of mouse chromosome 17 preferentially transmit the t-chromosome to their progeny. Several distorter/sterility loci carried on the t-haplotype together impair flagellar function in all spermatozoa whereas the responder, Tcr, rescues t-sperm but not wild-type sperm. Thus, t-sperm have an advantage over wild-type sperm in fertilizing egg cells. We have isolated Tcr by positional cloning and show that it is a member of a novel protein kinase gene family, designated Smok, which is expressed late during spermiogenesis. Smok kinases are components of a signal cascade which may control sperm motility. Tcr has a reduced kinase activity, which may allow it to counterbalance a signalling impairment caused by the distorter/sterility loci. Tcr transgene constructs cause non-mendelian transmission of chromosomes on which they are carried, which leads to sex-ratio distortion when Tcr cosegregates with the Y chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positional cloning identifies Tcr as a member of a novel gene family.
Figure 2: Predicted protein sequences of Tcr and Smok family members.
Figure 3: Smok genes and Tcr are expressed during spermiogenesis.
Figure 4: Proposed mechanism producing TRD and male sterility.

Similar content being viewed by others

References

  1. Silver,L. M. The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends Genet. 9, 250–254 (1993).

    Article  CAS  Google Scholar 

  2. Fraser,L. R. & Dudley,K. New insights into the t-complex and control of sperm function. BioEssays 21, 304–312 (1999).

    Article  CAS  Google Scholar 

  3. Lyon,M. F. Transmission ratio distortion in mouse t-haplotypes is due to multiple Distorter genes acting on a Responder locus. Cell 37, 621–628 (1984).

    Article  CAS  Google Scholar 

  4. Silver,L. M. & Remis,D. Five of nine genetically defined regions of mouse t haplotypes are involved in transmission ratio distortion. Genet. Res. Camb. 49, 51–56 (1987).

    Article  CAS  Google Scholar 

  5. Lyon,M. F. Male sterility of the mouse t-complex is due to homozygosity of the Distorter genes. Cell 44, 357–363 (1986).

    Article  CAS  Google Scholar 

  6. Olds-Clarke,P. & Johnson,L. t haplotypes in the mouse compromise sperm flagellar function. Dev. Biol. 155, 14–25 (1993).

    Article  CAS  Google Scholar 

  7. Fox,H. S. et al. Molecular probes define different regions of the mouse t complex. Cell 40, 63–69 (1985).

    Article  CAS  Google Scholar 

  8. Schimenti,J., Vold,L., Socolow,D. & Silver,L. M. An unstable family of large DNA elements in the center of the mouse t complex. J. Mol. Biol. 194, 583–594 (1987).

    Article  CAS  Google Scholar 

  9. Rosen,L. L., Bullard,D. C., Silver,L. M. & Schimenti,J. C. Molecular cloning of the t complex Responder genetic locus. Genomics 8, 134–140 (1990).

    Article  CAS  Google Scholar 

  10. Bullard,D. C., Ticknor,C. & Schimenti,J. C. Functional analysis of a t complex Responder locus transgene in mice. Mamm. Genome 3, 579–587 (1992).

    Article  CAS  Google Scholar 

  11. Schimenti,J. et al. A candidate gene family of the mouse t complex responder (Tcr) locus responsible for haploid effects on sperm function. Cell 55, 71–78 (1988).

    Article  CAS  Google Scholar 

  12. Ewulonu,U. K., Schimenti,K., Kuemerle,B., Magnuson,T. & Schimenti,J. Targeted mutagenesis of a candidate t complex responder gene in mouse t haplotypes does not eliminate transmission ratio distortion. Genetics 144, 785–792 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kispert,A., Stöger,R. J., Caparros,M. & Herrmann,B. G. The mouse Rsk3 gene maps to the Leh66 elements carrying the t-complex responder Tcr. Mamm. Genome 10, 794–802 (1999).

    Article  CAS  Google Scholar 

  14. Drewes,G., Ebneth,A., Preuss,U., Mandelkow,E. M. & Mandelkow,E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308 (1997).

    Article  CAS  Google Scholar 

  15. Hanks,S. K. & Hunter,T. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).

    Article  CAS  Google Scholar 

  16. Rugh,R. The Mouse, Its Reproduction and Development (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

  17. Peschon,J. J., Behringer,R. R., Brinster,R. L. & Palmiter,R. D. Spermatid-specific expression of protamine 1 in transgenic mice. Proc. Natl Acad. Sci. USA 84, 5316–5319 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Langford,K. G. et al. Transgenic mice demonstrate a testis-specific promoter for angiotensin-converting enzyme. J. Biol. Chem. 266, 15559–15562 (1991).

    CAS  PubMed  Google Scholar 

  19. Albanesi,C. et al. A cell- and developmental stage-specific promoter drives the expression of a truncated c-kit protein during mouse spermatid elongation. Development 122, 1291–1302 (1996).

    CAS  PubMed  Google Scholar 

  20. Willison,K. & Ashworth,A. Mammalian spermatogenic gene expression. Trends Genet. 3, 351–355 (1987).

    Article  Google Scholar 

  21. Braun,R. E., Behringer,R. R., Peschon,J. J., Brinster,R. L. & Palmiter,R. D. Genetically haploid spermatids are phenotypically diploid. Nature 337, 373–376 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Bennett,D., Alton,A. K. & Artzt,K. Genetic analysis of transmission ratio distortion by t-haplotypes in the mouse. Genet. Res. Camb. 41, 29–45 (1983).

    Article  CAS  Google Scholar 

  23. Lyon,M. F. Search for differences among t haplotypes in distorter and responder genes. Genet. Res. Camb. 55, 13–19 (1990).

    Article  CAS  Google Scholar 

  24. Tash,J. S., Kakar,S. S. & Means,A. R. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kD protein, axokinin. Cell 38, 551–559 (1984).

    Article  CAS  Google Scholar 

  25. Tash,J. S. et al. Identification, characterization, and functional correlation of calmodulin-dependent protein phosphatase in sperm. J. Cell Biol. 106, 1625–1633 (1988).

    Article  CAS  Google Scholar 

  26. Carrera,A. et al. Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev. Biol. 180, 284–296 (1996).

    Article  CAS  Google Scholar 

  27. Vijayaraghavan,S., Goueli,S. A., Davey,M. P. & Carr,D. W. Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J. Biol. Chem. 272, 4747–4752 (1997).

    Article  CAS  Google Scholar 

  28. Bracho,G. E., Fritch,J. J. & Tash,J. S. Identification of flagellar proteins that initiate the activation of sperm motility in vivo. Biochem. Biophys. Res. Com. 242, 231–237 (1998).

    Article  CAS  Google Scholar 

  29. Cosson,J. A moving image of flagella: news and views on the mechanism involved in axonemal beating. Cell Biol. Int. 20, 83–94 (1996).

    Article  CAS  Google Scholar 

  30. Lader,E., Ha,H. S., O'Neill,M., Artzt,K. & Bennett,D. tctex-1: a candidate gene family for a mouse t complex sterility locus. Cell 58, 969–979 (1989).

    Article  CAS  Google Scholar 

  31. Huw,L. Y., Goldsborough,A. S., Willison,K. & Artzt,K. Tctex2: a sperm tail surface protein mapping to the t-complex. Dev. Biol. 170, 183–194 (1995).

    Article  CAS  Google Scholar 

  32. Harrison,A., Olds-Clarke,P. & King,S. M. Identification of the t complex-encoded cytoplasmic dynein light chain tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive. J. Cell. Biol. 140, 1137–1147 (1998).

    Article  CAS  Google Scholar 

  33. Patel-King,R. S., Benashski,S. E., Harrison,A. & King,S. M. A Clamydomonas homologue of the putative murine t complex distorter Tctex-2 is an outer arm dynein light chain. J. Cell Biol. 137, 1081–1090 (1997).

    Article  CAS  Google Scholar 

  34. Mazarakis,N. et al. Isolation and characterization of a testis-expressed developmentally regulated gene from the distal inversion of the mouse t-complex. Development 111, 561–571 (1991).

    CAS  PubMed  Google Scholar 

  35. Lyon,M. F. & Zenthon,J. Differences in or near the responder region of complete and partial mouse t-haplotypes. Genet. Res. Camb. 50, 29–34 (1987).

    Article  CAS  Google Scholar 

  36. Sambrook,J., Fritsch,E. F. & Maniatis,T. Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

    Google Scholar 

  37. Wilkinson,D. G. In Situ Hybridization: A Practical Approach (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  38. Rossi,P. et al. A novel c-kit transcript, potentially encoding a truncated receptor, originates within a kit gene intron in mouse spermatids. Dev. Biol. 152, 203–207 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. F. Lyon, K. Artzt, J.-L. Guenet and J. Nadeau for mouse strains and DNA; A.-M. Frischauf for a cosmid library of the genotype tw12/tw12; B. Engist for technical assistance; S. Kuschert and H. Garbers for DNA injections; U. Stauffer for maintenance of strains; A. Bauer and M. Leitges for suggestions on kinase assays; D. Solter and R. Kemler for support; and S. Gasca, D. Solter, R. Cassada and M. Mallo for comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard G. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, B., Koschorz, B., Wertz, K. et al. A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature 402, 141–146 (1999). https://doi.org/10.1038/45970

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45970

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing