Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tidal disruption of the Magellanic Clouds by the Milky Way

Abstract

Interactions between galaxies are common, and influence physical properties such as the global morphology and star-formation rate1 (Hubble type). Galaxies can interact in many different ways: they can merge together; they can pass through each other, with gas being stripped from the smaller of the two and compressed in the larger; and they can interact gravitationally2 (including, for example, tides in clusters). The relative importance of these mechanisms is often not clear, as the strength of each depends on poorly known parameters such as the density, extent and nature of the dark-matter haloes that surround galaxies3. A nearby example of a galaxy interaction where the mechanism is controversial is that between our Galaxy and two of its neighbours, the Magellanic Clouds. Here we present the results of an atomic-hydrogen survey that help to elucidate this mechanism. Our data reveal a new stream of gas that lies in the opposite direction to the trailing Magellanic Stream and leads the motion of the Clouds. The existence of both leading and trailing streams supports a gravitational interaction whereby the streams are torn from the bodies of the Magellanic Clouds by tidal forces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 2,400 square-degree mosaic of the South Celestial Pole, with the main features labelled, including the area containing the newly identified Leading Arm.
Figure 2: Channel maps of the Magellanic System as labelled in Fig. 1; v lsr is labelled in km s−1 in the left upper corner of each channel.
Figure 3: A detailed view of the Leading Arm at the channel centred upon vlsr = 323 km s−1.
Figure 4: Expanded view of the LMC + SMC + Bridge regions from Fig. 1.

Similar content being viewed by others

References

  1. Hashimoto, Y., Oemler, A., Lin, H. & Tucker, D. L. The influence of environment on the star formation rates of galaxies. Astrophys. J. 499, 589–599 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Barnes, J. E. & Hernquist, L. Dynamics of interacting galaxies. Annu. Rev. Astron. Astrophys. 30, 705–742 (1992).

    Article  ADS  Google Scholar 

  3. Carr, B. Baryonic dark matter. Annu. Rev. Astron. Astrophys. 32, 531–590 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Mathewson, D. S., Cleary, M. N. & Murray, J. D. The Magellanic Stream. Astrophys. J. 190, 291–296 (1974).

    Article  ADS  Google Scholar 

  5. Mathewson, D. S., Wayte, S. R., Ford, V. L. & Ruan, K. The ‘High Velocity Cloud’ origin of the Magellanic Stream. Proc. Astron. Soc. Aus. 7, 19–25 (1987).

    Article  ADS  Google Scholar 

  6. Barnes, J. E. in Formation of the Galactic Halo(eds Morrison, H. & Sarajedini, A.) 415–423 (ASP Conf. Ser., San Francisco, (1996)).

    Google Scholar 

  7. Sofue, Y. Fate of the Magellanic system. Publ. Astron. Soc. Japan 46, 431–440 (1994).

    ADS  Google Scholar 

  8. Moore, B. & Davis, M. The origin of the Magellanic Stream. Mon. Not. R. Astr. Soc. 270, 209–221 (1994).

    Article  ADS  Google Scholar 

  9. Murai, T. & Fujimoto, M. The Magellanic Stream and the Galaxy with a massive halo. Publ. Astron. Soc. Japan 32, 581–603 (1980).

    ADS  Google Scholar 

  10. Gardiner, L. T. & Noguchi, M. N-body simulations of the Small Magellanic Cloud and the Magellanic Stream. Mon. Not. R. Astron. Soc. 278, 191–208 (1996).

    Article  ADS  Google Scholar 

  11. Gardiner, L. T., Sawa, T. & Fujimoto, M. Numerical simulations of the Magellanic Clouds and the global gas distribution. Mon. Not. R. Astron. Soc. 266, 567–582 (1994).

    Article  ADS  Google Scholar 

  12. Lin, D. N. C., Jones, B. F. & Klemola, A. R. The motion of the Magellanic Clouds, origin of the Magellanic System, and the mass of the Milky Way Astrophys. J. 439, 652–671 (1995).

    Article  ADS  Google Scholar 

  13. Davies, R. D. & Wright, A. E. Atidal origin for the Magellanic Stream. Mon. Not. R. Astron. Soc. 180, 71–88 (1977).

    Article  ADS  Google Scholar 

  14. Lin, D. N. C. & Lynden-Bell, D. Simulation of the Magellanic Stream to estimate the total mass of the Milky Way. Mon. Not. R. Astron. Soc. 181, 59–81 (1977).

    Article  ADS  Google Scholar 

  15. Guhathakurta, P. & Reitzel, D. B. in In Galactic Halos: A UC Santa Cruz Workshop(ed. Zaritsky, D.) 22–29 (ASP Conf. Ser., San Francisco, (1998)).

    Google Scholar 

  16. Staveley-Smith, L. H Imultibeam survey techniques. Publ. Astron. Soc. Aus. 14, 111–116 (1997).

    Article  ADS  Google Scholar 

  17. Barnes, D. G., Staveley-Smith, L., Ye, T. & Oosterloo, T. in Astronomical Data Analysis Software and Systems (ADA) VII(eds Albrecht, R., Hook, R. N. & Bushouse, H. A.) 89–92 (ASP Conf. Ser., San Francisco, (1998)).

    Google Scholar 

  18. Mathewson, D. S. & Ford, V. L. in Structure and Evolution of the Magellanic Clouds(eds van den Bergh, S. & de Boer, K. S.) 125–136 (Kluwer, Dordrecht, (1984)).

    Book  Google Scholar 

  19. Morras, R. Fine structure in high velocity clouds near the South Celestial Pole. Astron. Astrophys. 115, 249–252 (1982).

    ADS  CAS  Google Scholar 

  20. Wakker, B. P. Distribution and origin of high-velocity clouds. II—Statistical analysis of the whole-sky survey. Astron. Astrophys. 250, 499–508 (1991).

    ADS  Google Scholar 

  21. Burton, W. B. in Galactic and Extragalactic Radio Astronomy(eds Verschuur, G. L. & Kellermann, K. I.) 295–358 (Springer, New York, (1998)).

    Google Scholar 

  22. Brück, M. T. & Hawkins, M. R. S. An investigation of faint stars in a region of the Magellanic Stream. Astron. Astrophys. 124, 216–222 (1983).

    ADS  Google Scholar 

  23. Ostheimer, J. C., Majewski, S. R., Kunkel, W. E. & Johnston, K. V. Asearch for tidal star streams from the Magellanic Clouds. Bull. Am. Astron. Soc. 191, 131.03 (1997).

    Google Scholar 

  24. Broeils, A. H. & van Woerden, H. Asearch for spiral galaxies with extended HI disks. Astron. Astrophys. (suppl.) 107, 129–176 (1994).

    ADS  CAS  Google Scholar 

  25. Yun, M. S., Ho, P. T. P. & Lo, K. Y. Ahigh-resolution image of atomic hydrogen in the M81 group of galaxies. Nature 372, 530–532 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Kennicutt, R. C., Bresolin, F., Bomans, D. J., Bothun, G. D. & Thompson, I. B. Large scale structure of the ionized gas in the Magellanic Clouds. Astron. J. 109, 594–604 (1995).

    Article  ADS  CAS  Google Scholar 

  27. McGee, R. X. & Newton, L. M. H Iprofiles in the Bridge region of the Magellanic Clouds. Proc. Astron. Soc. Aus. 6, 471–500 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Lu, L. et al. The metallicity and dust content of HVC 287.5+22.5+240: evidence for a Magellanic Clouds origin. Astron. J. 115, 162–167 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Hartmann, D., Kalberla, P. M. W., Burton, W. B. & Mebold, U. Stray-radiation correction as applied to the Leiden/Dwingeloo survey of HI in the Galaxy. Astron. Astrophys. (suppl.) 119, 115–151 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Warwick Wilson, Mal Sinclair and their teams at CSIRO for their engineering excellence and thank the AIPS++ team for their software support; we also thank E. de Blok, A.Green, S. Juraszek, M. Kesteven, R. Kraan-Korteweg, A. Schröder, R. Gooch and L. Gardiner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Putman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putman, M., Gibson, B., Staveley-Smith, L. et al. Tidal disruption of the Magellanic Clouds by the Milky Way. Nature 394, 752–754 (1998). https://doi.org/10.1038/29466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29466

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing