Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a host galaxy at redshift z = 3.42 for the γ-ray burst of 14 December 1997

Abstract

Knowledge of the properties of γ-ray bursts has increased substantially following recent detections of counterparts at X-ray, optical and radio wavelengths. But the nature of the underlying physical mechanism that powers these sources remains unclear. In this context, an important question is the total energy in the burst, for which an accurate estimate of the distance is required. Possible host galaxies have been identified for the first two optical counterparts discovered, and a lower limit obtained for the redshift of one of them, indicating that the bursts lie at cosmological distances. A host galaxy of the third optically detected burst has now been identified and its redshift determined to be z = 3.42. When combined with the measured flux of γ-rays from the burst, this large redshift implies an energy of 3× 1053 erg in the γ-rays alone, if the emission is isotropic. This is much larger than the energies hitherto considered, and it poses a challenge for theoretical models of the bursts.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Images of the field of the optical transient of GRB971214 and the associated host galaxy.
Figure 2: The R- and I-band light curve of the OT of GRB971214.
Figure 3: The composite Keck spectrum of the host galaxy of GRB971214.

Similar content being viewed by others

References

  1. Klebesadel, R. W., Strong, I. B. & Olson, R. A. Observations of gamma-ray bursts of cosmic origin. Astrophys. J. 182, L85– L88 (1973).

    Article  ADS  Google Scholar 

  2. Boella, G. et al. BeppoSAX, the wide band mission for x-ray astronomy. Astron. Astrophys. Suppl. Ser. 122, 299– 399 (1997).

    Article  ADS  Google Scholar 

  3. Costa, E. et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783 –785 (1997).

    Article  ADS  CAS  Google Scholar 

  4. van Paradijs, J. et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 386, 686 –689 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Frail, D. A., Kulkarni, S. R., Nicastro, L., Feroci, M. & Taylor, G. B. The radio afterglow from the γ-ray burst of 8 May 1997. Nature 389, 261– 263 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Metzger, M. R. et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 387, 878–880 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Bond, H. E. et al. IAU Circ. No. 6665 (1997).

    Google Scholar 

  8. Djorgovski, S. G. et al. The optical counterpart to the γ-ray burst 970508. Nature 387, 876–878 ( 1997).

    Article  ADS  CAS  Google Scholar 

  9. Costa, E. et al. IAU Circ. No. 6649 (1997).

    Google Scholar 

  10. Piro, L. et al. IAU Circ. No. 6656 (1997).

    Google Scholar 

  11. Bloom, J. S., Kulkarni, S. R., Djorgovski, S. G. & Frail, D. A. GCN Note No. 30 (1998).

    Google Scholar 

  12. Zharikov, S. V., Sokolov, V. V. & Baryshev, Y. V. GCN Note No. 31 (1998).).

    Google Scholar 

  13. Galama, T. J. et al. Optical followup of GRB 970508. Astrophys. J. (submitted).

  14. Sahu, K. C. et al. Observations of GRB 970228 and GRB 970508 and the neutron star merger mode. Astrophys. J. 489, L127 –L131 (1997).

    Article  ADS  Google Scholar 

  15. Halpern, J. P., Thorstensen, J. R., Helfand, D. J. & Costa, E. Optical afterglow of the γ-ray burst of 14 December 1997 Nature 393, 41–43 ( 1998).

    Article  ADS  CAS  Google Scholar 

  16. Heise, J. et al. IAU Circ. No. 6787 (1997).

    Google Scholar 

  17. Kippen, R. M. et al. IAU Circ. No. 6789 (1997).

    Google Scholar 

  18. Antonelli, L. A. et al. IAU Circ. No. 6792 (1997).

    Google Scholar 

  19. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. 462, L17–L21 (1996).

    Article  ADS  Google Scholar 

  20. Steidel, C. C., Giavalisco, M., Dickinson, M. & Adelberger, K. L. Spectroscopy of Lyman break galaxies in the Hubble Deep Field. Astron. J. 112, 352–358 (1996).

    Article  ADS  Google Scholar 

  21. Steidel, C. C. et al. Alarge structure of galaxies at redshift z  3 and its cosmological implications. Astrophys. J. 492 , 428–438 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Meszáros, P. & Rees, M. J. Poynting jets from black holes and cosmological gamma-ray bursts. Astrophys. J. 482, L29–L31 ( 1997).

    Article  ADS  Google Scholar 

  23. Paczyński, B. Are gamma-ray bursts in star-forming regions? Astrophys. J. 492, L45–L48 (1998).

    Article  ADS  Google Scholar 

  24. Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pacif. 107, 375–385 (1995).

    Article  ADS  Google Scholar 

  25. Castander, F. J. et al. GCN Note No. 11 (1997).

    Google Scholar 

  26. Halpern, J., Thorstensen, J., Helfand, D. & Costa, E. IAU Circ. No. 6788 (1997).

    Google Scholar 

  27. Rhoads, J. IAU Circ. No. 6793 (1997).

    Google Scholar 

  28. Diercks, A. et al. IAU Circ. No. 67921 (1997).

    Google Scholar 

  29. Henden, A. A., Luginbuhl, C. B. & Vrba, F. J. GCN Note. No. 16 (1997).

    Google Scholar 

  30. Landolt, A. U. UBVRI photometric standard stars in the magnitude range 11.5 < V < 16.0 around the celestial equator. Astron. J. 104, 340–371 (1992).

    Article  ADS  Google Scholar 

  31. Wijers, R. A. M. J., Rees, M. J. & Meszáros, P. Shocked by GRB 970228: the afterglow of a cosmological fireball. Mon. Not. R. Astron Soc. 288, L51–L56 (1997).

    Article  ADS  Google Scholar 

  32. Sokolov, V. V. et al. BVRcIC photometry of GRB 970508 optical remnant: May–August, 1997. Astron. Astrophys. (in the press); preprint http://xxx.lanl.gov, astro-ph/0902341 ( 1998).

  33. Galama, T. J. et al. Optical follow-up of GRB 970508. Astrophys. J. (in the press); preprint http://xxx.lanl.gov, astro-ph/9802160 (1998).

  34. Waxman, E. Gamma-ray-burst afterglow: supporting the cosmological fireball model, constraining parameters, and making predictions. Astrophys. J. 485 , L5–L8 (1997).

    Article  ADS  Google Scholar 

  35. Hogg, D. W.et al. Counts and colors of faint galaxies in the U and R bands. Mon. Not. R. Astron. Soc. 288, 404– 410 (1997).

    Article  ADS  Google Scholar 

  36. Oke, J. B. & Korycansky, D. Absolute spectrophotometry of very large redshift quasars. Astrophys. J. 255, 11–19 (1996).

    Article  ADS  Google Scholar 

  37. Kennefick, J. D., Djorgovski, S. G. & de Carvalho, R. R. The luminosity function of z > 4 quasars from the second Palomar sky survey. Astron. J. 110, 2553–2565 (1995).

    Article  ADS  Google Scholar 

  38. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust IR emission for use in estimation of reddening and CMBR foregrounds. Astrophys. J. (in the press); preprint http://xxx.lanl.gov astro-ph/0910327.

  39. Thompson, D., Djorgovski, S. & Trauger, J. Anarrow-band imaging survey for primeval galaxies. Astron. J. 110, 963–981 (1995).

    Article  ADS  Google Scholar 

  40. Charlot, S. & Fall, S. M. Lyman-alpha emission from galaxies. Astrophys. J. 415, 580– 588 (1993).

    Article  ADS  CAS  Google Scholar 

  41. Leitherer, C., Robert, C. & Heckman, T. M. Atlas of synthetic ultraviolet-spectra of massive star populations. Astrophys. J. Suppl. 99, 173–187 (1995).

    Article  ADS  CAS  Google Scholar 

  42. Doty, J. P. The All Sky Monitor for the X-ray Timing Explorer. Proc. SPIE 982, 164–172 (1988).

    Article  ADS  Google Scholar 

  43. Narayan, R., Pacsyński, B. & Piran, T. Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. 395, L83– L86 (1992).

    Article  ADS  CAS  Google Scholar 

  44. Wijers, R. A. M. J., Bloom, J., Bagla, J. S. & Natarajan, P. Gamma-ray bursts from stellar remnants: probing the universe at high redshift. Mon. Not. R. Astron. Soc. 294, L13– L17 (1998).

    Article  ADS  Google Scholar 

  45. Massey, P., Strobel, K., Barnes, J. & Anderson, E. Spectrophotometric standards. Astrophys. J. 328, 315– 333 (1988).

    Article  ADS  Google Scholar 

  46. Bohlin, R., Colina, L. & Finley, D. White dwarf standard stars: G191-B2B, GD 71, GD 153, HZ 43. Astron. J. 110, 1316– 1325 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The observations reported here were obtained at the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy, a scientific partnership among California Institute of Technology, the University of California and NASA. It was made possible by the financial support from W. M. Keck Foundation. We thank W. Sargent, Director of the Palomar Observatory, F. Chaffee, Director of the Keck Observatory and our colleagues for continued support of our GRB program. We thank J. C. Clemens and M. H. van Kerkwijk for help with observations and exchange of dark time. S.R.K.'s research is supported by the NSF and NASA. S.G.D. acknowledges partial support from the Bressler Foundation. A.N.R. is grateful to the International Astronomical Union for a travel grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, S., Djorgovski, S., Ramaprakash, A. et al. Identification of a host galaxy at redshift z = 3.42 for the γ-ray burst of 14 December 1997. Nature 393, 35–39 (1998). https://doi.org/10.1038/29927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29927

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing