Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a unique binuclear manganese cluster in arginase

Abstract

EACH individual excretes roughly 10 kg of urea per year, as a result of the hydrolysis of arginine in the final cytosolic step of the urea cycle1. This reaction allows the disposal of nitrogenous waste from protein catabolism, and is catalysed by the liver arginase enzyme2. In other tissues that lack a complete urea cycle, arginase regulates cellular arginine and ornithine concentrations for biosynthetic reactions3, including nitric oxide synthesis: in the macrophage, arginase activity is reciprocally coordinated with that of NO synthase to modulate NO-dependent cytotoxicity4–9. The bioinorganic chemistry of arginase is particularly rich because this enzyme is one of very few that specifically requires a spin-coupled Mn2+ –Mn2+ cluster for catalytic activity in vitro and in vivo10. The 2.1 Å-resolution crystal structure of trimeric11 rat liver arginase reveals that this unique metal cluster resides at the bottom of an active-site cleft that is 15 Å deep. Analysis of the structure indicates that arginine hydrolysis is achieved by a metal-activated solvent molecule which symmetrically bridges the two Mn2+ ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krebs, H. A. & Henseleit, K. Hoppe-Seyler's Z. Physiol. Chem. 210, 33–66 (1932).

    Article  CAS  Google Scholar 

  2. Herzfeld, A. & Raper, S. M. Biochem. J. 153, 469–478 (1976).

    Article  CAS  Google Scholar 

  3. Yip, M. C. M. & Knox, W. E. Biochem. J. 127, 893–899 (1972).

    Article  CAS  Google Scholar 

  4. Corraliza, I. M., Soler, G., Eichmann, K. & Modolell, M. Biochem. Biophys. Res. Commun. 206, 667–673 (1995).

    Article  CAS  Google Scholar 

  5. Daghigh, F., Fukuto, J. M. & Ash, D. E. Biochem. Biophys. Res. Commun. 202, 174–180 (1994).

    Article  CAS  Google Scholar 

  6. Chénais, B., Yapo, A., Lepoivre, M. & Tenu, J.-P. Biochem. Biophys. Res. Commun. 196, 1558–1565 (1993).

    Article  Google Scholar 

  7. Klatt, P., Schmidt, K., Uray, G. & Mayer, B. J. Biol. Chem. 268, 14781–14787 (1993).

    CAS  PubMed  Google Scholar 

  8. Keller, R., Gehri, R., Keist, R., Huf, E. & Kayser, F. H. Cell. Immunol. 134, 249–256 (1991).

    Article  CAS  Google Scholar 

  9. Albina, J. E., Henry, W. L., Mastrofrancesco, B., Martin, B.-A. & Reichner, J. S. J. Immunol. 155, 4391–4396 (1995).

    CAS  PubMed  Google Scholar 

  10. Reczkowski, R. S. & Ash, D. E. J. Am. Chem. Soc. 114, 10992–10994 (1992).

    Article  CAS  Google Scholar 

  11. Kanyo, Z. F., Chen, C.-Y., Daghigh, F., Ash, D. E. & Christianson, D. W. J. Mol. Biol. 224, 1175–1177 (1992).

    Article  CAS  Google Scholar 

  12. Christianson, D. W. & Alexander, R. S. J. Am. Chem. Soc. 111, 6412–6419 (1989).

    Article  CAS  Google Scholar 

  13. Rardin, R. L., Tolman, W. B. & Lippard, S. J. New J. Chem. 15, 417–430 (1991).

    CAS  Google Scholar 

  14. Cavalli, R. C., Burke, C. J., Kawamoto, S., Soprano, D. R. & Ash, D. E. Biochemistry 33, 10652–10657 (1994).

    Article  CAS  Google Scholar 

  15. Christianson, D. W. & Fierke, C. A. Acc. Chem. Res. 29, 331–339 (1996).

    Article  CAS  Google Scholar 

  16. Reczkowski, R. S. & Ash, D. E. Arch. Biochem. Biophys. 312, 31–37 (1994).

    Article  CAS  Google Scholar 

  17. Kuhn, N. J., Talbot, J. & Ward, S. Arch. Biochem. Biophys. 286, 217–221 (1991).

    Article  CAS  Google Scholar 

  18. Jabri, E., Carr, M. B., Hausinger, R. P. & Karplus, P. A. Science 268, 998–1004 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Park, I.-S. & Hausinger, R. P. Biochemistry 35, 5345–5352 (1996).

    Article  CAS  Google Scholar 

  20. Nyborg, J. & Wonacott, A. J. in The Rotation Method in Crystallography (eds Arndt, U. W. & Wonacott, A. J.) 139–152 (North-Holland, Amsterdam, 1977).

    Google Scholar 

  21. Collaborative Computational Project No. 4 Acta Crystallogr. D 50, 760–763 (1994).

  22. Furey, W. & Swaminathan, S. Am. Crystallogr. Assoc. Mtg Prog. Abstr. 18, 73 (1990).

    Google Scholar 

  23. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  24. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Acta. Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  26. Bacon, D. J. & Anderson, W. F. J. Mol. Graph. 6, 219–220 (1988).

    Article  Google Scholar 

  27. Merritt, E. A. & Murphy, M. E. P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanyo, Z., Scolnick, L., Ash, D. et al. Structure of a unique binuclear manganese cluster in arginase. Nature 383, 554–557 (1996). https://doi.org/10.1038/383554a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383554a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing