Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single optical photon detection with a superconducting tunnel junction

Abstract

THE charge-coupled device (CCD) has become the detector of choice in optical astronomy. CCDs provide a very linear response to detected photons, are very efficient at some wavelengths, and can now provide coverage of a relatively wide field of view1–3. But they become quite inefficient with decreasing wavelength, and they lack intrinsic wavelength and time resolution. The only way to select specific wavelengths is to place filters in front of the detector, which makes the total system less efficient. Time resolution can be achieved only with short exposures, which are possible only with very bright sources. Here we report a superconducting device that can overcome these limitations, and which has performance characteristics far superior to existing photon counting systems4–7. Our superconducting tunnel junction can detect individual photons at rates up to 2.5 kHz in the wavelength range 200–500 nm, with an intrinsic spectral resolution of 45 nm and a quantum efficiency estimated to be about 50 per cent. The theoretical resolution of the present device is 20 nm, but use of superconductors with lower transition temperature could improve that to 8 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacoby, G. H. in CCD's in Astronomy 424, (Conf. Ser. 8, Astr. Soc. Pacif., 1990).

    Google Scholar 

  2. Janesick, J. et al. Proc. SPIE 223J, 223–237 (1990).

    Article  Google Scholar 

  3. Delamere, A. in Photon Detectors for Instrumentation 111–113 (SP-356, ESA, Noordwijk, 1992).

    Google Scholar 

  4. Boksenberg, A. in Image Processing Techniques in Astronomy 15,(eds de Jager, C. & Nieuwenhuizen) (Reidel, Dordrecht, 1975).

    Google Scholar 

  5. Cullum, M. in Instrumentation for Ground-Based Optical Astronomy, Present and Future (ed. Robinson, L. B.) 511–515 (Springer, New York, 1988).

    Book  Google Scholar 

  6. Timothy, J. in Instrumentation for Ground-Based Optical Astronomy, Present and Future (ed. Robinson, L B.) 516–519 (Springer, New York, 1988).

    Book  Google Scholar 

  7. Petroff, M. D. & Stapelbroeck, M. G. IEEE Trans Nucl. Sci. 36, 158–162 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Wood, G. H. & White, B. Appl. Phys. Lett. 15, 237–238 (1969).

    Article  ADS  CAS  Google Scholar 

  9. Twerenbold, D. Euorphys. Lett. 1, 209–210 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Rando, N. et al. Nucl. Instrum. Meth. A313, 173–195 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Twerenbold, D. Phys. Rev. B34, 7748–7759 (1986).

    Article  ADS  CAS  Google Scholar 

  12. de Korte, P. in Photon Detectors for Instrumentation (SP-356, ESA, Noordwijk, 1992).

    Google Scholar 

  13. Perryman, M. A. C., Foden, C. L. & Peacock, A. in Photon Detectors for Instrumentation 21–26 (SP-356, ESA, Noordwijk, 1992).

    Google Scholar 

  14. Perryman, M. A. C., Foden, C. L. & Peacock, A. Nucl. Instrum. Meth. A325, 319–325 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Chi, C. C. et al. Phys. Rev. B23, 124–132 (1981).

    Article  CAS  Google Scholar 

  16. Kurakado, M. & Matsumura, A. in Int. Superconductivity Conf. ISEC Vol. 89, 59–62 (Tsukuba, Ibaraki 305, Japan, 1989).

    Google Scholar 

  17. Rando, N. et al. J. low temp. Phys. 93, 659–664 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Gray, K. Appl. Phys. Lett. 32, 392–395 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Booth, N. Appl. Phys. Lett. 50, 293–295 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Mears, C. A., Labov, S. E. & Barfknecht, A. T. Appl. Phys. Lett. 63, 2961–2963 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Verhoeve, P. et al. Phys. Rev. B (in the press).

  22. Fano, U. Phys. Rev. 72, 26–29 (1947).

    Article  ADS  CAS  Google Scholar 

  23. Goldie, D. J. et al. Appl. Phys. Lett. 64, 3169–3171 (1994).

    Article  ADS  Google Scholar 

  24. Dravins, D. ESO Messenger Vol. 78, 9–19 (ESO, Munchen, 1994).

    ADS  Google Scholar 

  25. Weaver, J. H. et al. Physik Daten, Fach-informations zentrum Nr. 18-1, 1–71 (Haslab, Desy, Hamburg, 1981).

    Google Scholar 

  26. Lumb, D. et al. Proc. SPIE 2518, 258–267 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peacock, A., Verhoeve, P., Rando, N. et al. Single optical photon detection with a superconducting tunnel junction. Nature 381, 135–137 (1996). https://doi.org/10.1038/381135a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381135a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing