Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reconstructing sea surface temperature and salinity using δ18O and alkenone records

Abstract

THE oxygen isotope (δ18O) composition of foraminiferal tests from deep-sea sediments is widely used as a palaeoclimate proxy, but it includes contributions from sea surface temperature, global ice volume and local salinity, which are difficult to separate. Recently a new technique for deriving palaeotemperatures has been developed which is based on the abundance ratios of unsaturated alkenones in phytoplankton algae1,2. Here we use a combination of oxygen isotope and alkenone records in a deep-sea core from the juncture of the Arabian Sea and the Bay of Bengal to extract the salinity signal from the former record. Variations in salinity are related to the balance between evaporation and precipitation3, and are thus a sensitive indicator of climate change. Our 170-kyr salinity record enables us to reconstruct changes in the Indian monsoon over this period, considerably extending earlier studies (which reached back to 18 kyr ago)4–8. Like these previous studies, we find that large variations in the monsoon occurred during the transition from the last glacial period to the present interglacial, but our results also provide a view of the monsoon throughout the last glacial and demonstrate the potential of this approach for reconstructing palaeosalinity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. & Sarnthein, M. Nature 320, 129–133 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Prahl, F. G. & Wakeham, S. G. Nature 330, 367–369 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Cadet, D. & Reverdin, G. Tellus 33, 476–487 (1981).

    Article  ADS  Google Scholar 

  4. Van Campo, E. Quat. Res. 26, 378–388 (1986).

    Article  Google Scholar 

  5. Cullen, J. L. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35, 315–356 (1981).

    Article  Google Scholar 

  6. Prell, W. A., et al. Quat. Res. 14, 309–336 (1980).

    Article  Google Scholar 

  7. Duplessy, J. C. Nature 295, 494–497 (1982).

    Article  ADS  Google Scholar 

  8. Fontugne, M. R. & Duplessy, J. C. Palaeogeogr. Palaoclimatol. Palaeoecol. 56, 69–88 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Wyrtki, K. in The Biology of the Indian Ocean (ed. Zeitschel, B.) 18–36 (Springer, New York, 1973).

    Book  Google Scholar 

  10. Bearman, G. (ed.) Ocean Circulation (Pergamon, Oxford, 1991).

  11. Wyrtki, K. Oceanographic Atlas of the International Indian Ocean Expedition 531 (National Science Foundation, Washington DC 1971).

    Google Scholar 

  12. Bassinot, F. thesis, Univ. Aix-Marseille III (1993).

  13. Imbrie, J. et al. in Milankovitch and Climate. Part I (eds Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.), NATO ASI Series 126, 269–305 (1984).

    Google Scholar 

  14. Prahl, F. G., Muehlhausen, L. A. & Lyle, M. Geochim. cosmochim. Acta 52, 2303–2310 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Müller, P. J., Schneider, R. & Ruhland, G., in Carbon Cycling in the Glacial Ocean: constraints on the Oceans Rote in Global Climate Change (eds Zahn, R., Kaminski, M. & Pedersen, T. F.) NATO ASI Series (in the press.)

  16. Prell, W. A. & Hutson, W. A. Science 206, 454–456 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Clemens, S., Prell, W. A., Murray, D., Shimmield, G. & Weedon, G. Nature 353, 720–725 (1991).

    Article  ADS  Google Scholar 

  18. Wüst, G., Brogmus, W. & Noodt, E. N. Kieler Meeresforsch. 10, 137–161 (1954).

    Google Scholar 

  19. Craig, H. & Gordon, L. I. in Spoleto Conference in Nuclear Geology (ed. Tongiorgi E.) 9–130 (CNR, Pisa, 1965).

  20. Broecker, W. S. Paleoceanogr. 4(2), 207–212 (1989).

    Article  ADS  Google Scholar 

  21. Levitus, S. in NOAA Prof. Pap. Vol. 13 (US Government Printing Office, Washington DC, 1982).

    Google Scholar 

  22. Nair, R. R. et al. Nature 338, 749–751 (1989).

    Article  ADS  Google Scholar 

  23. Curry, W. B., Ostermann, D. R., Guptha, M. V. S. & Ittekkot, V. in Upwelling Systems: Evolution since the Early Miocene (eds Summerhayes, C. P., Prell. W. L. & Emeis, K. C.) No. 64, 93–106 Geol. Soc. Spec. Publ. No. 64, London, 1992.

  24. Ittekkot, V., Haake, B., Bartsch, M., Nair, R. R. & Ramaswamy, V. in: Upwelling Systems: Evolution since the Early Miocene, (eds Summerhayes, C. P., Prell. W. L. & Emeis, K. C.) No. 64, 167–176 Geol. Soc. Spec. Publ. London, 1992.

  25. Duplessy, J. C., Blanc, J. P. & Bé, A. W. H. Science 213, 1247–1250 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Labeyrie L. D., Duplessy, J. C. & Blanc, P. L. Nature 327, 477–482 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Vogelsang, E. thesis. Univ. Kiel (1990).

  28. Fairbanks, R. G. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  29. Labeyrie, L. D. & Duplessy, J. C. Paleogeogr. Palaeoclimatol. Paleoecol. 50, 217–240 (1985).

    ADS  CAS  Google Scholar 

  30. Labeyrie, L. D. et al. Quat. Sci. Rev. 121, 401–413 (1992).

    Article  ADS  Google Scholar 

  31. Savitzky, A. & Golay, M. J. E. Anal. Chem. 36(8), 1627–1639 (1964).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostek, F., Ruhlandt, G., Bassinot, F. et al. Reconstructing sea surface temperature and salinity using δ18O and alkenone records. Nature 364, 319–321 (1993). https://doi.org/10.1038/364319a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364319a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing