Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

One-dimensional reactivity in catalysis studied with the scanning tunnelling microscope

Abstract

THE scanning tunnelling microscope (STM) has yielded great insight into the structure of surfaces and into the dynamics of surface reconstruction and adsorption1. We show here that it can also provide direct information about the microscopic mechanisms of catalytic reactions on surfaces. We have studied the oxidation of carbon monoxide on an oxygen-precovered rhodium (110) surface, a process related to the catalytic removal of CO in exhaust gases2,3. The STM images show that the reactivity is strongly influenced by the oxygen-induced reconstructions of the surface. The reaction is initiated at high-energy adsorption sites, mainly at steps and domain boundaries of the adsorbed oxygen layer. The CO strips away one-dimensional islands of oxygen atoms on the reconstructed surface, proceeding in the [011] direction. More generally, these results show how the STM can provide insights into the microkinetics of surface reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Guntherodt, H.-J. & Weisendanger, R. (eds) Scanning Tunnelling Microscopy I (Springer, Berlin 1992).

  2. Taylor, K. C. Catalysis (eds Anderson J. R. & Boudart, M.) Vol. 5, 119–170 (1984).

    Book  Google Scholar 

  3. Joyner, R. W., Bowker, M. & Truex, T. J. Chem. Brit. 28, 1011 (1992).

    Google Scholar 

  4. Onuferko, J. H., Woodruff, D. P. & Holland, B. W. Surf. Sci. 87, 357–374 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Raval, R., Haq, S., Harrison, M., Blyholder, G. & King, D.A., Chem. Phys. Lett. 167, 391–396 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Gaussmann, A. & Kruse, N. Catal. Lett. 10, 305–316 (1991).

    Article  CAS  Google Scholar 

  7. McIntyre, B. J., Salmeron, M. & Somorjai, G. A. Catal. Lett. 14, 263–269 (1992).

    Article  Google Scholar 

  8. King, D. A. & Thomas, G. Surf. Sci. 92, 201–236 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Bowker, M., Guo, Q. & Joyner, R. W. Surf. Sci. 253, 33–43 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Murray, P. W. et al. Phys. Rev. B. May 1993 (in the press).

  11. Schwartz, E., Lenz, J., Wohlgemuth, H. & Christmann, K. Vacuum 41, 167–175 (1990).

    Article  ADS  Google Scholar 

  12. Comelli, G. et al. Surf. Sci. 260, 7–13 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Bowker, M., Guo, Q. & Joyner, R. W. Surf. Sci. 280, 50–62 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Bowker, M., Guo, Q., Pudney, P. & Joyner, R. W. in Studies Surf. Sci. Catal. 71, 409–416 (1991).

    Article  CAS  Google Scholar 

  15. Ertl, G. Catal. Lett. 9, 219–230 (1991).

    Article  CAS  Google Scholar 

  16. Blakely, D. & Somorjai, G. A. J. Catal. 42, 181 (1976).

    Article  CAS  Google Scholar 

  17. Oh, S., Fisher, G., Carpenter, J. & Goodman, D.W. J. Catal. 100, 360–376 (1986).

    Article  CAS  Google Scholar 

  18. Bowker, M., Guo, Q. & Joyner, R. W. Catal. Lett. 18, 119–124 (1993).

    Article  CAS  Google Scholar 

  19. Cautero, G., Astaldi, C., Rudolf, P., Kiskinova, M. & Rosei, R. Surf. Sci. 258, 44–57 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Comelli, G. et al. Surf. Sci. 269/270, 360–363 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibsle, F., Murray, P., Francis, S. et al. One-dimensional reactivity in catalysis studied with the scanning tunnelling microscope. Nature 363, 706–709 (1993). https://doi.org/10.1038/363706a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363706a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing