Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

Abstract

SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3–5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) → NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25–30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80–85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Summers, A. O. & Silver, S. A. Rev. Microbiol. 32, 637–672 (1978).

    Article  CAS  Google Scholar 

  2. Begley, T. P., Walts, A. E. & Walsh, C. T. Biochemistry 25, 7186–7192 (1986).

    Article  CAS  Google Scholar 

  3. Fox, B. & Walsh, C. T. J. biol. Chem. 257, 2498–2503 (1982).

    CAS  PubMed  Google Scholar 

  4. Misra, T. K. et al. Gene 34, 253–262 (1985).

    Article  CAS  Google Scholar 

  5. Moore, M. J., Distefano, M. D., Zydowsky, L. D., Cummings, R. T. & Walsh, C. T. Acct chem. Res. 23, 301–308 (1990).

    Article  CAS  Google Scholar 

  6. Williams, C. H. Jr The Enzymes 13, 90–165 (1976).

    Google Scholar 

  7. Karplus, P. A. & Schulz, G. E. J. molec. Biol. 195, 701–729 (1987).

    Article  CAS  Google Scholar 

  8. Pai, E. F. & Schulz, G. E. J. biol. Chem. 258, 1752–1757 (1983).

    CAS  PubMed  Google Scholar 

  9. Krauth-Siegel, R. L. et al. Eur. J. Biochem. 121, 259–267 (1982).

    Article  CAS  Google Scholar 

  10. Laddaga, R. A., Chu, L., Misra, T. K. & Silver, S. Proc. natn. Acad. Sci. U.S.A. 84, 5106–5110 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Wang, Y. et al. J. Bacteriol. 171, 83–92 (1989).

    Article  CAS  Google Scholar 

  12. Pai, E. F., Karplus, P. A. & Schulz, G. E. Biochemistry 27, 4465–4474 (1988).

    Article  CAS  Google Scholar 

  13. Distefano, M. D., Au, K. G. & Walsh, C. T. Biochemistry 28, 1168–1183 (1989).

    Article  CAS  Google Scholar 

  14. Distefano, M. D., Moore, M. J. & Walsh, C. T. Biochemistry 29, 2703–2713 (1990).

    Article  CAS  Google Scholar 

  15. Miller, S. M. et al. Biochemistry 29, 2831–2841 (1990).

    Article  CAS  Google Scholar 

  16. Miller, S. M., Moore, M. J., Massey, V., Williams, C. H. Jr & Walsh, C. T. Biochemistry 28, 1194–1205 (1989).

    Article  CAS  Google Scholar 

  17. Miller, S. M., Ballou, D. P., Massey, V., Williams, C. H. Jr & Walsh, C. T. J. biol. Chem. 261, 8081–8084 (1986).

    CAS  PubMed  Google Scholar 

  18. Miller, S. M., Massey, V., Williams, C. H. Jr, Ballou, D. P. & Walsh, C. T. Biochemistry 30, 2600–2612 (1991).

    Article  CAS  Google Scholar 

  19. Rinderle, S. J., Booth, J. E. & Williams, J. W. Biochemistry 22, 869–876 (1983).

    Article  CAS  Google Scholar 

  20. Distefano, M. D. thesis, Massachusetts Institute of Technology (1989).

  21. Sahlmann, L., Lambeir, A.-M. & Lindskog, S. Eur. J. Biochem. 156, 479–488 (1986).

    Article  Google Scholar 

  22. Raybuck, S. A., Distefano, M. D., Teo, B.-T., Orme-Johnson, W. & Walsh, C. T. J. Am. chem. Soc. 112, 1983–1989 (1990).

    Article  CAS  Google Scholar 

  23. Moore, M. J., Distefano, M. D., Walsh, C. T., Schiering, N. & Pai, E. F. J. biol. Chem. 264, 14386–14388 (1989).

    CAS  PubMed  Google Scholar 

  24. Kabsch, W. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  25. Kabsch, W. J. appl. Crystallogr. 21, 67–71 (1988).

    Article  CAS  Google Scholar 

  26. Dickerson, R. E., Weinzierl, J. E. & Palmer, R. A. Acta crystallogr. B24, 997–1003 (1968).

    Article  CAS  Google Scholar 

  27. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  28. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  29. Read, R. J. Acta crystallogr. A42, 140–149 (1986).

    Article  Google Scholar 

  30. Priestle, J. P. J. appl. Crystallogr. 21, 572–576 (1988).

    Article  Google Scholar 

  31. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  32. Kabsch, W. Acta crystallogr. A34, 827–828 (1978).

    Article  Google Scholar 

  33. Mattevi, A., Schierbeek, A. J. & Hol, W. G. J. J. molec. Biol. (in the press).

  34. Kuriyan, J. et al. Nature 352, 172–174 (1991).

    Article  ADS  CAS  Google Scholar 

  35. Karplus, P. A. & Schulz, G. E. J. molec. Biol. 210, 163–180 (1989)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiering, N., Kabsch, W., Moore, M. et al. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352, 168–172 (1991). https://doi.org/10.1038/352168a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352168a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing