Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis

Abstract

DYNAMIN was discovered in bovine brain tissue as a nucleotide-sensitive microtubule-binding protein of relative molecular mass 100,0001. It was found to cross-link microtubules into highly ordered bundles, and appeared to have a role in intermicrotubule sliding in vitro. Cloning and sequencing of rat brain dynamin complementary DNA identified an N-terminal region of about 300 amino acids which contained the three consensus elements characteristic of GTP-binding proteins2. Extensive homology was found between this domain and the mammalian MX proteins which are involved in interferon-induced viral resistance3,4, and with the product of the VPS1 locus in Saccharomyces cerevisiae, which has been implicated both in membrane protein sorting5, and in meiotic spindle pole separation6. Dynamin-containing microtubule bundles were not observed in an immunofluorescence study of cultured mammalian cells7, but a role for a GTP-requiring protein in intermicrotubule sliding during mitosis in plants has been reported8. We report here that Drosophila melanogaster contains multiple tissue-specific and developmentally-regulated forms of dynamin, which are products of the shibire locus previously implicated in endocytic protein sorting9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shpetner, H. S. & Vallee, R. B. Cell 59, 421–432 (1989).

    Article  CAS  Google Scholar 

  2. Obar, R., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Nature 347, 256–261 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Staeheli, P., Haller, O., Boll, W., Lindenmann, J. & Weissmann, C. Cell 44, 147–158 (1986).

    Article  CAS  Google Scholar 

  4. Staeheli, P. & Sutcliffe, J. G. Molec. cell. Biol. 8, 4524–4528 (1988).

    Article  CAS  Google Scholar 

  5. Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. Cell 61, 1063–1074 (1990).

    Article  CAS  Google Scholar 

  6. Yen, E., Driscoll, R., Coltrera, M., Olins, A. & Bloom, K. Nature 349, 713–715 (1991).

    Article  ADS  Google Scholar 

  7. Scaife, R. & Margolis, R. L. J. Cell Biol. 111, 3023–3033 (1990).

    Article  CAS  Google Scholar 

  8. Asada, T., Sonobe, S. & Shibaoka, H. Nature 350, 238–241 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Poodry, C. A. & Edgar, L. J. Cell Biol. 81, 520–527 (1979).

    Article  CAS  Google Scholar 

  10. Kosada, T. & Ikeda, K. J. Cell Biol. 97, 499–507 (1983).

    Article  Google Scholar 

  11. Itoh, N. et al. Proc. natn. Acad. Sci. U.S.A. 83, 4081–4085 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Grigliatti, T. A., Hall, L., Rosenbluth, R. & Suzuki, D. T. Molec. gen. Genet. 120, 107–114 (1973).

    Article  CAS  Google Scholar 

  13. Poodry, C. A. Drosophila Information Service 68, 207–208 (1990).

    Google Scholar 

  14. Poodry, C. A. Devl Biol. 138, 464–472 (1990).

    Article  CAS  Google Scholar 

  15. Herman, B. & Albertini, D. F. J. Cell Biol. 98, 565–576 (1984).

    Article  CAS  Google Scholar 

  16. Matteoni, R. & Kreis, T. E. J. Cell Biol. 105, 1253–1265 (1987).

    Article  CAS  Google Scholar 

  17. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Bloom, G. S. & Vallee, R. B. J. Cell Biol. 96, 1523–1531 (1983).

    Article  CAS  Google Scholar 

  19. Vallee, R. B. Meth. Enzym. 134, 104–116 (1986).

    Article  CAS  Google Scholar 

  20. Kozak, M. Nucleic Acids Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  21. Cavener, D. R. Nucleic Acids Res. 15, 1353–1361 (1987).

    Article  CAS  Google Scholar 

  22. Chomczynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  23. Gregory, R. J., Kammermeyer, K. L., Vincent, W. S. & Wadsworth, S. C. Molec. cell. Biol. 7, 2119–2127 (1987).

    Article  CAS  Google Scholar 

  24. Lucchesi, J. C. A. Rev. Genet. 7, 225–237 (1973).

    Article  CAS  Google Scholar 

  25. Poodry, C. A. Drosophila Information Services 55, 210 (1980).

    Google Scholar 

  26. Cramer, L. & Roy, E. Drosophila Information Service 55, 200–204 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Obar, R., Schroeder, C. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991). https://doi.org/10.1038/351583a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351583a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing