Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diffraction pattern simulations of quasiperiodic structures

Abstract

The recent experimental and theoretical interest in quasiperiodic structures has been inspired by Shechtman et al.'s discovery1 of precipitates in rapidly cooled Al–Mn, Al–Fe and Al–Cr alloys which exhibit m35 icosahedral point symmetry. Subsequent work has shown how diffraction patterns with the same symmetries as those observed experimentally can be generated from model frameworks of linked icosahedra2,3 and of three-dimensional Penrose tilings (3DPT)4,5, in which space is filled aperiodically by prolate and oblate rhombohedra with equal sides and angles of ±cos−1 (1/√5) (ref. 6). Here we demonstrate that the computed intensities of the diffracted beams of kinematical electron and X-ray diffraction patterns of quasicrystals are sensitive to the choice of atomic decoration of the underlying 3DPT. Significantly, we have been unable to find a unique atomic decoration of the prolate and oblate rhombohedra which can account fully for the experimental diffraction data. We discuss the implications of this in the light of experimental data on the lack of chemical homogeneity of the icosadredral phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Shechtman, D. & Blech, I. Met. Trans. A 16, 1005–1012 (1985).

    Article  Google Scholar 

  3. Stephens, P. W. & Goldman, A. I. Phys. Rev. Lett. 56, 1168–1171 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Duneau, M. & Katz, A. Phys. Rev. Lett. 54, 2688–2691 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Elser, V. Acta crystallogr. A 42, 36–43 (1986).

    Article  MathSciNet  Google Scholar 

  6. Mackay, A. L., Physica A114, 609–613 (1982).

    Article  MathSciNet  Google Scholar 

  7. Elser, V. & Henley, C. L. Phys. Rev. Lett. 55, 2883–2886 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Henley, C. L. J. Non-Crystal. Sol. 75, 91–96 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Henley, C. L. & Elser, V. Phil. Mag. B53, L59–L66 (1986).

    Article  CAS  Google Scholar 

  10. Audier, M. & Guyot, P. Phil. Mag. B53, L43–L51 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Knowles, K. M., Greer, A. L., Saxton, W. O. & Stobbs, W. M. Phil. Mag. B52, L31–L38 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Kimura, K. et al. J. phys. Soc. Japan 55, 534–543 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Bancel, P. A., Heiney, P. A., Stephens, P. W., Goldman, A. I. & Horn, P. M. Phys. Rev. Lett. 54, 2422–2425 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Elser, V. Phys. Rev. B32, 4892–4898 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Nicol, A. D. I. Acta crystallogr. 6, 285–293 (1953).

    Article  CAS  Google Scholar 

  16. Cooper, M. & Robinson, K. Acta crystallog. 20, 614–617 (1966).

    Article  CAS  Google Scholar 

  17. Kimura, K. et al. J. phys. Soc. Japan 54, 3217–3219 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Zaidi, M. A., Robinson, J. S. & Sheppard, T. Mat. Sci. Technol. 1, 737–742 (1985).

    Article  CAS  Google Scholar 

  19. Conway, J. H. & Knowles, K. M. J. Phys. A (in the press).

  20. Smith, G. H. & Burge, R. E. Acta crystallogr. 15, 182–186 1962).

    Article  CAS  Google Scholar 

  21. Levine, D. & Steinhardt, P. J. Phys. Rev. Lett. 53, 2477–2480 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Hiraga, K., Hirabayashi, M., Inoue, A. & Masumoto, T. J. phys. Soc. Japan 54, 4077–4080 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Poon, S. J., Drehman, A. J. & Lawless, K. R. Phys. Rev. Lett. 55, 21–24 (1985).

    Article  Google Scholar 

  24. Ramachandrarao, P. & Sastry, G. V. Pramana 25, L225–L330 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Zhang, Z., Ye, H. Q. & Kuo, K. H. Phil Mag. A52, L49–L52 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Sastry, G. V. S., Rao, V. V., Ramachandrarao, P. & Anantharaman, T. R. Scr. Met. 20, 191–193 (1986).

    Article  CAS  Google Scholar 

  27. Pauling, L. Nature, 317, 512–514 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Bak, P. Phys. Rev. Lett. 56, 861–864 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Cahn, J. W., Gratias, D. & Shechtman, D. Nature 319, 102–103 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Mackay, A. L. Nature 319, 103–104 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Bancel, P. A., Heiney, P. A., Stephens, P. W. & Goldman, A. I. Nature 319, 104 (1986).

    Article  ADS  CAS  Google Scholar 

  32. Berezin, A. A. Nature 319, 104 (1986).

    Article  ADS  CAS  Google Scholar 

  33. Stobbs, W. M. Phil. Mag. 35, 1001 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowles, K., Stobbs, W. Diffraction pattern simulations of quasiperiodic structures. Nature 323, 313–317 (1986). https://doi.org/10.1038/323313a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323313a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing